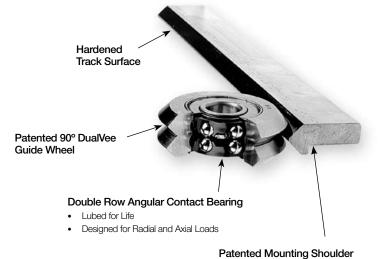
Motion Without Limits[®]

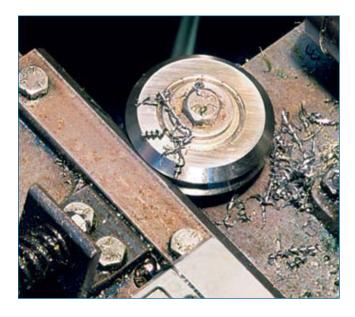
LoPro® Actuated Linear Guidance System



0

Bishop-Wisecarver, manufacturer of the ORIGINAL DualVee® guide wheel, is recognized as the market leader for guide wheel technology. In 1967, Bud Wisecarver patented DualVee Motion Technology® (DMT). Three main components define DMT – the DualVee guide wheel, its mating vee profile track with patented mounting shoulder, and support bushings. DMT is one of the most popular guided motion technologies due to its self-cleaning action and self-aligning track, which result in an overall lower installation cost.

Quick and Accurate Installation


- Unlimited Travel Lengths
- Easily Joined Track

DualVee Motion Technology is ideal for a wide array of applications, from the clean room to the sawmill. DualVee's recirculating elements are self-contained and isolated from the environment. Without direct contact with the rail that can subject bearings to contamination, and ultimately, premature failure, DMT excels in dirty and severe environments.

DMT's circular bearing design also allows for faster acceleration and speeds.

- Carbon or stainless steel components
- Speeds up to 5.5 m/s
- Acceleration up to 5 g's
- High accuracy and repeatability
- High temperature and clean room options
- Corrosion resistant versions available
- Ground mounting surfaces not required
- Low noise
- Smooth action
- Long lengths

Designed for Dirty and Severe Environments

The patented 90° DualVee design creates a velocity gradient, since the circumference of the wheel is greater at the major diameter, resulting in a constant sweeping action that cleans debris from the track.

Product Overview

LoPro[®] Linear Motion Systems

LoPro linear motion systems are available in four sizes and in belt, lead screw, ball screw and chain driven configurations, as well as un-driven. LoPro provides a tough, cost effective, low friction, low profile modular solution, built to withstand a wide range of operating environments. LoPro is the system of choice for wood, packaging and textile machinery, as well as the clean room or laboratory.

LoPro has the lowest profile in the industry, accomplished by mounting two lengths of our hardened steel track to a low profile milled aluminum track plate. The veeways are pre-aligned and parallel to within .002in (0.05mm). Track plate is available in single piece lengths up to 10 feet (3m), but are routinely butt-joined with a staggered track arrangement for long custom lengths.

Complete Integrated Package

- Belt, chain, ball screw, lead screw, or un-driven
- 4 wheel plate sizes to accommodate axial loads from 222 lbs to 3,526 lbs (988N to 15,684N)
- Corrosion resistant versions available

Belt Drive AT style steel reinforced polyurethane belting

Lead Screw Lead accuracies to .0006 in/in (mm/mm)

> **Ball Screw** Accurate to .004 in/ft (100 μm/300mm)

Chain Drive Standard or corrosion resistant ANSI roller chain

Table of Contents

Product Overview	1-3
Application Examples	4
Belt Driven Systems	
Drive Ends Idler Ends Intentionally	9
Idler Endantentiona	10
Wheel Plate Option ittea	11-12
Idler Ends intentionany Wheel Plate Opt onmitted Support Beams	13
System Ordering Information	14
Chain Driven Systems	
Drive Ends	
Idler Ends	
Wheel Plate Options	
Support Beams	
System Ordering Information	
Lead Screw Driven Systems	
Fixed End & Simple End	
Wheel Plate Options	30-31
Support Beams	
Support Beams. System Or Intentionally Ball Screw Driven Sy omitted	
Ball Screw Driven Sycom ITLES	34-42
דוגפט בווט מ סוודוףופ בווט	
Wheel Plate Options	
Support Beams	
System Ordering Information	
Un-driven Systems	
Wheel Plate Options Support Beams	
Support Bears	
Track Plate Assemblies	
Tools and Accessories	
Motor Mounts	
Gantry Brackets	
Other Tools and Accessories	
Technical Reference	
System Mass Calculations	
Custom Engineered Systems	

Application and Design Assistance 888.580.8272 925.439.8272

3D Modeling and CAD Drawings www.bwc.com

Product Overview

Proven Technology

DMT has been successfully employed in industrial linear motion systems for 40 years.

High Speed

Speeds up to 5.5 m/s, and acceleration up to 5 g's.

Low Profile Sleek, compact design.

Low Noise/Low Vibration

Reduces noise and vibration substantially over recirculating ball designs.

Long Stroke Lengths

Tracks can be butt-joined to create systems of virtually any length (screw driven system lengths are limited by available screw lengths).

Tolerant of Contamination and Debris

Inherent surface velocity gradient provides a constant sweeping action.

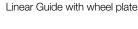
Flexibility and Simplicity

Modular system permits optimized engineered solutions for specific application requirements. Wheel-to-track fit-up makes assembly and field maintenance easy to perform.

System Components


Linear Guide

The linear guide consists of a track plate assembly(ies) and wheel plate assembly(ies), each wheel plate assembly containing four DualVee wheels.


Linear Actuator

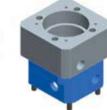
Belt, chain, lead screw, or ball screw driven.

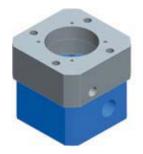
Linear Actuator (ball screw shown)

consisting of four DualVee wheels, bushings and a

Motor Mounts (Optional)

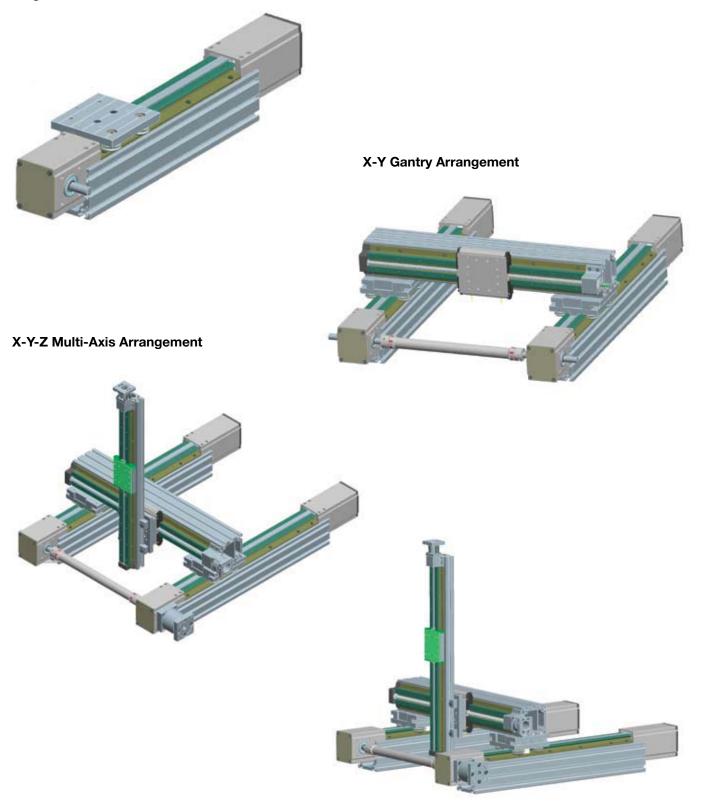
Drive Ends





Support Beams

- Aluminum (standard)
- Steel (standard)
- Stainless Steel (custom)



A ST C

Typical Configurations

Single Axis Linear Motion

Multi-Industry Applications

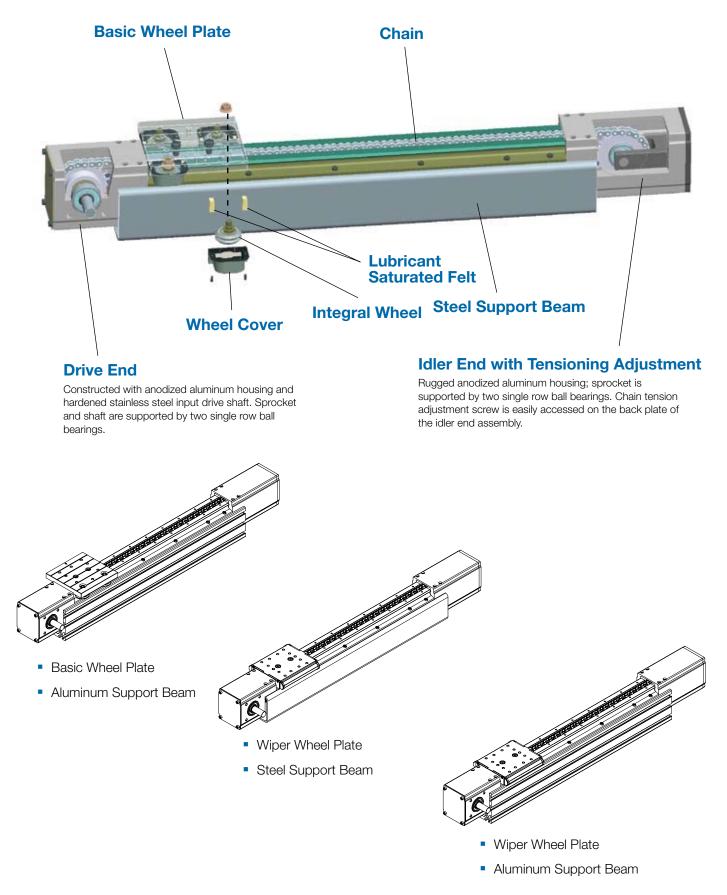
DualVee-based linear guides are popular worldwide and used throughout a broad range of industries.

- Machine tool
- Laboratory
- Automotive production
- Industrial automation
- Biomedical
- Inspection equipment
- Material handling equipment
- Textile machinery
- Paper processing and converting
- Semiconductor
- Packaging machinery
- Electronics assembly
- Non-contact machining equipment

Bishop-Wisecarver specializes in long length challenges. Belt and chain driven LoPro linear actuators have been fabricated up to 80 feet.

Automotive assembly plant. LoPro is used to carry an air gun and parts for assembly, minimizing the possibility of workers tripping over long hoses and carrying heavy loads.

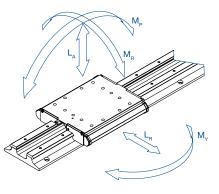
Door frame drilling jig. With LoPro's precise travel and fast acceleration, exact placement of holes for production door frames is easy and repeatable every time.



This "X-Y" Plasma cutter, using a LoPro ball screw driven system, operates in a harsh environment consisting of smoke, abrasive dust, weld splatter, hot sparks and elevated temperatures.

A chain driven LoPro is used on a vinyl fence production machine pushing vinyl fence components into a drill press.

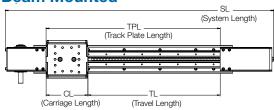
Chain Driven Systems

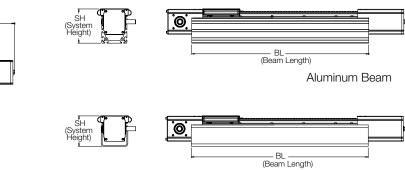


Chain Driven Systems

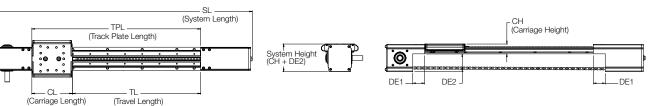
- Complete chain actuated system, ready for installation
- Ideal for vertical hoisting and large load actuation over long lengths
- Standard or corrosion resistant ANSI roller chain
- Accurate to .015 in/ft (0.4mm/300mm)
- Repeatable within .008 in (0.2mm)
- Small and large drive options available on size 2
- Aluminum support beams, steel beams or unmounted (without beams)
- Basic wheel plate or wiper wheel plate
- Optional NEMA and IEC motor mounts
- Steel or stainless steel drive end sprockets

	Carriage Assembly Load Capacities											
System Size	Axial Load Capacity L _A Size		Radial Load Capacity L _R		Pitch Moment Capacity M _p		Yaw Moment Capacity M _y		Roll Moment Capacity M _R			
	N	lbs	N	lbs	N∙m	ft·lbf	N∙m	ft·lbf	N∙m	ft·lbf		
1	988	222	2391	538	26	18.9	62	45.7	27	19.8		
2S/2L	2450	551	5194	1168	95	70.3	202	148.9	100	73.8		
3	6668	1499	11564	2600	346	254.9	599	442.1	372	274.1		
4	15684	3526	19012	4274	1220	899.5	1478	1090.3	1174	865.6		


	L	oPro Sys	stem Ch	ain Load	Capaci	ties				Drive End Sp	rockets	
		S		ow Spee ng Load	d	Wor	king Loa	ad at 0.5	m/s			
System Size	Chain Size Single Strand	Ste	eel	Stair Ste		Ste	eel	Stair Sto		Pitch Diameter	No. of Teeth	
		N	lbs	N	lbs	N	lbs	N	lbs			
1	25	431	97	347	78	267	60	214	48	24.5mm (.966in)	12	
2S	35	1036	233	841	189	618	139	494	111	36.8mm (1.449in)	12	
2L	35	1036	233	841	189	645	145	516	116	79.0mm (3.111in)	26	
3	40	1975	444	1481	333	1152	259	863	194	93.3mm (3.672in)	23	
4	50	3261	733	2322	522	1788	402	1272	286	91.4mm (3.599in)	18	


Working load varies with speed. Contact Bishop-Wisecarver for specific application information.

Steel Beam


Chain Driven Systems - Wiper Wheel Plate

Un-mounted*

Size	Track Plate Length	System Length		System Heigh SH	nt	Beam Length BL	Carriage Height CH
	TPL (=TL+CL)	SL	Aluminum	Steel	Un-mounted	Beam Mounted	Un-mounted
1	TL+94.0mm	TPL+173.6mm	63.0mm	61.1mm	39.0mm	TL+154.0mm	23.0mm
	TL+3.701in	TPL+6.833in	2.482in	2.407in	1.537in	TL+6.063in	.907in
2S	TL+129.9mm	TPL+227.6mm	73.0mm	71.1mm	61.0mm	TL+209.9mm	33.0mm
	TL+5.114in	TPL+8.960in	2.874in	2.799in	2.401in	TL+8.264in	1.299in
2L	TL+129.9mm	TPL+318.1mm	113.0mm	109.2mm	101.0mm	TL+209.9mm	33.0mm
	TL+5.114in	TPL+12.522in	4.449in	4.299in	3.976in	TL+8.264in	1.299in
3	TL+177.6mm	TPL+400.1mm	163.0mm	144.6mm	121.1mm	TL+281.6mm	43.0mm
	TL+6.990in	TPL+15.751in	6.417in	5.693in	4.768in	TL+11.084in	1.693in
4	TL+243.8mm TL+9.600in	TPL+440.9mm TPL+17.358in	N/A	156.6mm 6.167in	130.0mm 5.120in	TL+351.8mm TL+13.852in	55.0mm 2.167in

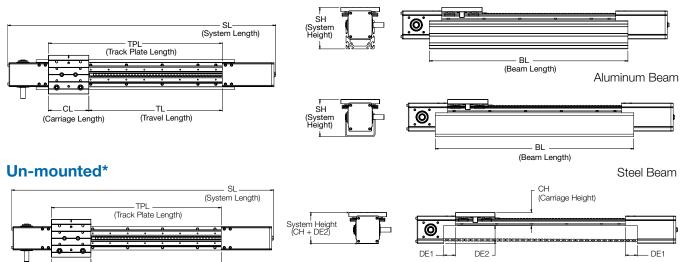
Size	Drive End Cutout Width DE1	Drive End Cutout Height DE2	System Inertia J (A + B + C)					
	Un-mounted	Un-mounted	А	B ¹	C ²			
1	30.0mm	16.0mm	71.7kg•mm²	.0508kg•mm x TL	188mm² x M			
	1.181in	.630in	.245lb•in²	.00441lb•in x TL	.292in² x M			
2S	40.0mm	28.0mm	500kg•mm²	.280kg•mm x TL	423mm ² x M			
	1.575in	1.102in	1.71lb•in²	.0243lb•in x TL	.656in ² x M			
2L	40.0mm	68.0mm	3140kg•mm²	1.29kg•mm x TL	1950mm² x M			
	1.575in	2.677in	10.7lb•in²	.112lb•in x TL	3.02in² x M			
3	52.0mm	78.1mm	10100kg•mm²	3.40kg•mm x TL	2720mm ² x M			
	2.047in	3.075in	34.4lb•in²	.295lb•in x TL	4.21in ² x M			
4	54.0mm	75.0mm	19300kg•mm²	5.34kg•mm x TL	2610mm ² x M			
	2.126in	2.953in	66.1lb•in²	.463lb•in x TL	4.05in ² x M			

*Un-mounted systems are designed for mounting to a customer-supplied mounting surface. System straightness and flatness are determined by mounting surface accuracy. Continuous support along the entire track plate length and under drive end mounting surfaces is required.

1. TL (Travel Length) must be in mm for metric calculation, inches for English calculation.

2. M (Mass of payload on the carriage) must be in kg for metric calculation, lbm for English calculation.

Chain Driven Systems - Basic Wheel Plate


Beam Mounted

– CI

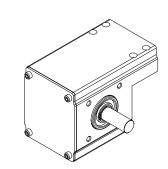
(Carriage Length)

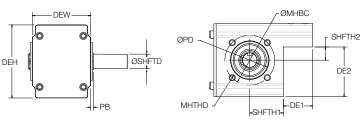
TL

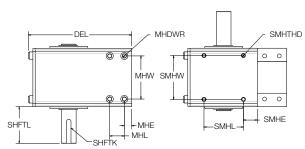
(Travel Length)

System Height **Beam Length** Carriage Height Track Plate Length System Length SH BL СН Size TPL (=TL+CL) SL Aluminum Steel **Un-mounted Beam Mounted Un-mounted** TPL+173.6mm TL+90.0mm 72.1mm 70.2mm 48.1mm TL+150.0mm 32.1mm 1 1.265in TL+3.543in TPL+6.833in 2.840in 2.765in 1.895in TL+5.906in TL+127.0mm TPL+227.6mm 83.0mm 81.1mm 71.0mm TL+206.8mm 43.0mm 2S TL+5.000in TPL+8.960in 3.269in 3.194in 2.796in TL+8.140in 1.694in 123.0mm TL+206.8mm 43.0mm TL+127.0mm TPL+318.1mm 119.2mm 111.0mm 2L TL+5.000in 4.844in 4.694in 4.371in TL+8.140in 1.694in TPL+12.522in TL+172.0mm TPL+400.1mm 177.0mm 158.6mm 135.1mm 57.0mm TL+276.0mm З 2.244in TL+6.772in TPL+15.751in 6.969in 6.245in 5.320in TL+10.866in TL+242.0mm TPL+440.9mm 170.6mm 144.0mm TL+350.0mm 69.0mm N/A 4 TL+13.780in TL+9.528in TPL+17.358in 6.718in 5.671in 2.718in

Size	Drive End Cutout Width DE1	Drive End Cutout Height DE2	Sys	stem Inertia J (A + B +	- C)	
	Un-mounted	Un-mounted	А	B ¹	C²	
1	30.0mm	16.0mm	93.2kg•mm²	.0508kg•mm x TL	188mm² x M	
	1.181in	.630in	.318lb•in²	.00441lb•in x TL	.292in² x M	
2S	40.0mm	28.0mm	591kg•mm²	.280kg•mm x TL	423mm ² x M	
	1.575in	1.102in	2.02lb•in²	.0243lb•in x TL	.656in ² x M	
2L	40.0mm	68.0mm	3560kg•mm²	1.29kg•mm x TL	1950mm² x M	
	1.575in	2.677in	12.2lb•in²	.112lb•in x TL	3.02in² x M	
3	52.0mm	78.1mm	11500kg•mm²	3.40kg•mm x TL	2720mm ² x M	
	2.047in	3.075in	39.4lb•in²	.295lb•in x TL	4.21in ² x M	
4	54.0mm	75.0mm	21900kg•mm²	5.34kg•mm x TL	2610mm ² x M	
	2.126in	2.953in	74.9lb•in²	.463lb•in x TL	4.05in ² x M	

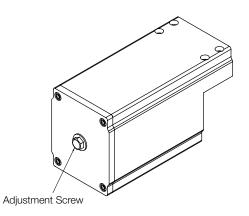

*Un-mounted systems are designed for mounting to a customer-supplied mounting surface. System straightness and flatness are determined by mounting surface accuracy. Continuous support along the entire track plate length and under drive end mounting surfaces is required.

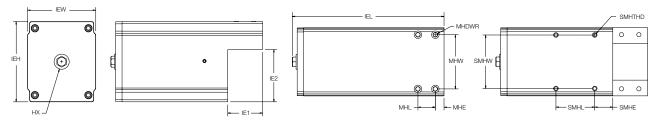

1. TL (Travel Length) must be in mm for metric calculation, inches for English calculation.


2. M (Mass of payload on the carriage) must be in kg for metric calculation, lbm for English calculation.

Drive Ends for Chain Driven Systems

- Designed for high performance, high cycling linear motion
- Incorporates high quality radial bearings with a high strength aircraft grade aluminum housing
- Drive ends are available with optional relief holes for extremely aggressive environments with high particulate matter. Contact Bishop-Wisecarver for details.


Size	Drive End Length	Drive End Width	Drive End Height	Shaft Length	Shaft Diameter	Shaft Square Key Size	Shaft Lo	ocations	Drive End Cutout Width	Drive End Cutout Height	Mounting Hardware
	DEL	DEW	DEH	SHFTL	SHFTD	SHFTK	SHFTH1	SHFTH2	DE1	DE2	MHDWR
1	76.2mm 2.999in	50.0mm 1.969in	38.0mm 1.496in	29.6mm 1.166in	9.0mm .354in	3mm	20.0mm .787in	-3.0mm .118in	30.0mm 1.181in	16.0mm .630in	M3x22mm MIN
2S	95.2mm 3.748in	72.0mm 2.835in	60.0mm 2.362in	36.7mm 1.445in	12.0mm .472in	4mm	24.0mm .945in	-2.0mm .079in	40.0mm 1.575in	28.0mm 1.102in	M5x30mm MIN
2L	141.2mm 5.558in	80.0mm 3.150in	100.0mm 3.937in	50.1mm 1.973in	20.0mm .787in	6mm	46.0mm 1.811in	18.0mm .709in	40.0mm 1.575in	68.0mm 2.677in	M5x35mm MIN
3	173.2mm 6.818in	102.0mm 4.016in	120.0mm 4.724in	50.1mm 1.973in	20.0mm .787in	6mm	56.0mm 2.205in	18.1mm .713in	52.0mm 2.047in	78.1mm 3.075in	M6x45mm MIN
4	183.2mm 7.212in	140.0mm 5.512in	128.0mm 5.039in	50.1mm 1.973in	20.0mm .787in	6mm	59.0mm 2.323in	11.0mm .434in	54.0mm 2.126in	75.0mm 2.953in	M8x55mm MIN


	Mountir	ng Holes (T	ypical)		Moto	r Mount		ļ	Ancillary Mo	ounting Hole	s
Size	Width	Edge Spacing	Length	Pilot Diameter	Pilot Bearing Height	Bolt Circle Diameter	Mounting Hole Thread	Width	Length	Edge Spacing	Thread
	мнพ	MHE	MHL	PD	PB	МНВС	MHTHD	SMHW	SMHL	SMHE	SMHTHD
1	40.0mm 1.575in	6.0mm .236in	18.0mm .709in	24.0mm .945in	1.7mm .067in	42.4mm 1.670in	M4x0.7	42.0mm 1.654in	N/A	30.0mm 1.181in	M4x0.7
2S	59.0mm 2.323in	10.0mm .394in	20.0mm .787in	28.0mm 1.102in	1.7mm .067in	50.9mm 2.004in	M5x0.8	60.0mm 2.362in	N/A	30.0mm 1.181in	M5x0.8
2L	59.0mm 2.323in	10.0mm .394in	20.0mm .787in	52.0mm 2.047in	2.7mm .106in	67.9mm 2.673in	M8x1.25	60.0mm 2.362in	54.0mm 2.126in	19.0mm .748in	M5x0.8
3	81.0mm 3.189in	13.0mm .512in	26.0mm 1.024in	52.0mm 2.047in	2.7mm .106in	87.7mm 3.452in	M8x1.25	80.0mm 3.150in	58.0mm 2.283in	27.0mm 1.063in	M6x1.0
4	111.0mm 4.370in	13.5mm .532in	27.0mm 1.063in	52.0mm 2.047in	2.7mm .106in	90.5mm 3.564in	M8x1.25	110.0mm 4.331in	64.0mm 2.520in	27.0mm 1.063in	M8x1.25

Right hand version shown. Dual shaft, left hand, and corrosion resistant versions are also available. Contact Bishop-Wisecarver for details.

Idler Ends for Chain Driven Systems

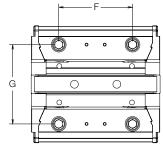
- Chain adjustment is easily accomplished via rotation of a single, easy-to-access adjustment screw
- High quality radial bearings and high strength aluminum housing provides smooth, accurate linear motion
- Idler ends are available with optional relief holes for extremely aggressive environments with high particulate matter. Contact Bishop-Wisecarver for details.

		Bottor	n View	Idler End	Idler End	Mounting
Size	Idler End Length	ldler End Width	ldler End Height	Cutout Width	Cutout Height	Mounting Hardware
	IEL	IEW	IEH	IE1	IE2	MHDWR
1	97.4mm	50.0mm	38.0mm	30.0mm	16.0mm	M3x22mm
	3.834in	1.969in	1.496in	1.181in	.630in	MIN
2S	132.4mm	72.0mm	60.0mm	40.0mm	28.0mm	M5x30mm
	5.212in	2.835in	2.362in	1.575in	1.102in	MIN
2L	176.9mm	80.0mm	100.0mm	40.0mm	68.0mm	M5x35mm
	6.964in	3.150in	3.937in	1.575in	2.677in	MIN
3	226.9mm	102.0mm	120.0mm	52.0mm	78.1mm	M6x45mm
	8.933in	4.016in	4.724in	2.047in	3.075in	MIN
4	257.7mm	140.0mm	128.0mm	54.0mm	75.0mm	M8x55mm
	10.146in	5.512in	5.039in	2.126in	2.953in	MIN

	Moui	nting Holes (Typic	cal)	Hex Head	Ancillary Mounting Holes					
Size	Width	Edge Spacing	Length	Adj. Screw	Width	Length	Edge Spacing	Thread		
	мнพ	МНЕ	MHL	НХ	SMHW	SMHL	SMHE	SMHTHD		
1	40.0mm 1.575in	6.0mm .236in	18.0mm .709in	1/4in	42.0mm 1.654in	N/A	30.0mm 1.181in	M4x0.7		
2S	59.0mm 2.323in	10.0mm .394in	20.0mm .787in	1/4in	60.0mm 2.362in	N/A	30.0mm 1.181in	M5x0.8		
2L	59.0mm 2.323in	10.0mm .394in	20.0mm .787in	5/16in	60.0mm 2.362in	54.0mm 2.126in	19.0mm .748in	M5x0.8		
3	81.0mm 3.189in	13.0mm .512in	26.0mm 1.024in	5/16in	80.0mm 3.150in	58.0mm 2.283in	27.0mm 1.063in	M6x1.0		
4	111.0mm 4.370in	13.5mm .532in	27.0mm 1.063in	3/8in	110.0mm 4.331in	64.0mm 2.520in	27.0mm 1.063in	M8x1.25		

Corrosion resistant versions are also available. Contact Bishop-Wisecarver for details.

Wheel Plate Options for Chain Driven Systems

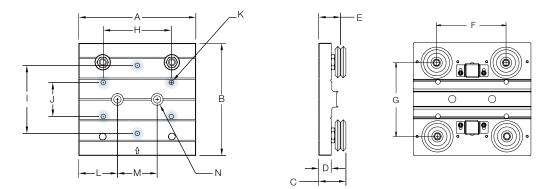

Wiper Wheel Plate

Size	Part Number	Overall Length	Overall Width	Assembly Height	Wheel Plate Height	Wheel Vee Height	Wheel Spacing Length	Wheel Spacing Width
		Α	В	С	D	E	F	G
1	LP1WPADG	94.0mm 3.700in	78.0mm 3.070in	18.5mm .730in	16.5mm .650in	9.5mm .375in	50.8mm 2.00in	53.29mm 2.098in
2	LP2WPADG	129.9mm 5.114in	115.3mm 4.540in	26.4mm 1.041in	23.3mm .916in	14.0mm .551in	76.2mm 3.00in	80.01mm 3.150in
3	LP3WPADG	177.6mm 6.990in	161.3mm 6.350in	35.6mm 1.403in	30.3mm 1.193in	18.0mm .709in	101.6mm 4.00in	109.22mm 4.300in
4	LP4WPADG	243.8mm 9.600in	213.2mm 8.394in	45.7mm 1.798in	39.5mm 1.553in	24.0mm .945in	152.4mm 6.00in	146.66mm 5.774in

For secondary wheel plate assembly, consult factory.

Size	Mounting Hole Length 1	Mounting Hole Length 2	Mounting Hole Width 1	Mounting Hole Width 2	Mounting Hole Thread	Coupler Mounting Hole to Edge	Coupler Mounting Hole Length	Coupler Fastener	Weight in Grams
	н	l I	J	K	L	М	N	0	
1	N/A	50.0mm 1.969in	50.0mm 1.969in	25.0mm .984in	M4x0.7	33.7mm 1.325in	26.7mm 1.05in	M5	194
2	30.0mm 1.181in	76.0mm 2.992in	76.0mm 2.992in	38.0mm 1.496in	M6x1.0	42.1mm 1.657in	45.7mm 1.80in	M8	628
3	38.0mm 1.496in	100.0mm 3.937in	100.0mm 3.937in	50.0mm 1.969in	M8x1.25	59.6mm 2.345in	58.4mm 2.30in	M10	1629
4	66.0mm 2.598in	152.0mm 5.984in	152.0mm 5.984in	66.0mm 2.598in	M10x1.5	71.1mm 2.800in	101.6mm 4.00in	M12	3816

Highlighted holes indicate customer mounting holes


Wheel plate assemblies included with complete systems. See system ordering information, page 24.

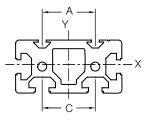
Wheel Plate Options for Chain Driven Systems

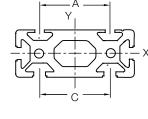
Basic Wheel Plate

Size	Part Nu	Part Number		Overall Width	Assembly Height	Wheel Plate Height	Wheel Vee Height	Wheel Spacing Length	Wheel Spacing Width
	Track Lubricators	Wheel Covers	А	В	С	D	E	F	G
1	BWP1SWTLBC	BWP1SWWCBC	90.0mm 3.54in	80.0mm 3.15in	23.09mm .909in	11.33mm .446in	18.62mm .733in	50.8mm 2.00in	53.29mm 2.098in
2	BWP2SWTLBC	BWP2SWWCBC	127.0mm 5.00in	116.0mm 4.57in	25.59mm 1.165in	14.40mm .567in	24.03mm .946in	76.2mm 3.00in	80.01mm 3.150in
3	BWP3SWTLBC	BWP3SWWCBC	172.0mm 6.77in	165.0mm 6.50in	39.93mm 1.572in	18.36mm .723in	32.00mm 1.260in	101.6mm 4.00in	109.22mm 4.300in
4	BWP4SWTLBC	BWP4SWWCBC	242.0mm 9.53in	222.0mm 8.74in	47.52mm 1.871in	21.64mm .852in	38.00mm 1.496in	152.4mm 6.00in	146.66mm 5.774in

Size	Mounting Hole Length	Mounting Hole Width 1	Mounting Hole Width 2	Mounting Hole Thread	Coupler Mounting Hole to Edge	Coupler Mounting Hole Length	Coupler Fastener	Weight in Grams ¹
	н	l I	J	К	L	М	Ν	
1	50.0mm 1.969in	50.0mm 1.969in	25.0mm .984in	M4x0.7	31.67mm 1.247in	26.7mm 1.05in	M5	307
2	76.0mm 2.992in	76.0mm 2.992in	38.0mm 1.496in	M6x1.0	40.64mm 1.600in	45.7mm 1.80in	M8	835
3	100.0mm 3.937in	100.0mm 3.937in	50.0mm 1.969in	M8x1.25	56.79mm 2.236in	58.4mm 2.30in	M10	2153
4	152.0mm 5.984in	152.0mm 5.984in	66.0mm 2.598in	M10x1.5	70.21mm 2.764in	101.6mm 4.00in	M12	4765

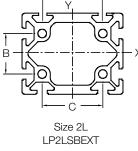
Highlighted holes indicate customer mounting holes. Wheel plate assembly shown with track lubricators.

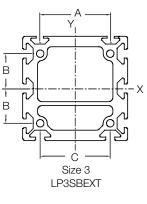

Wheel plate assemblies included with complete systems. See system ordering information, page 24.


1. Weights shown are for wheel plates with wheel covers and without coupling kits. Basic wheel plates with track lubricators weigh slightly less.

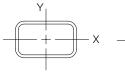
Support Beams for Chain Driven Systems

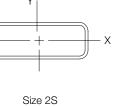
Aluminum Support Beams

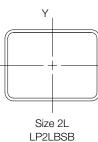

- Designed with industry standard cross section and T-slot (10mm) geometry
- Compatible with HepcoMotion[®]'s MCS aluminum frame and machine construction system from Bishop-Wisecarver, as well as other industry profile extrusions

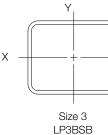


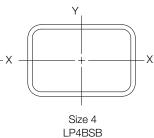
Size 1 LP1SBEXT


Size 2S LP2SSBEXT

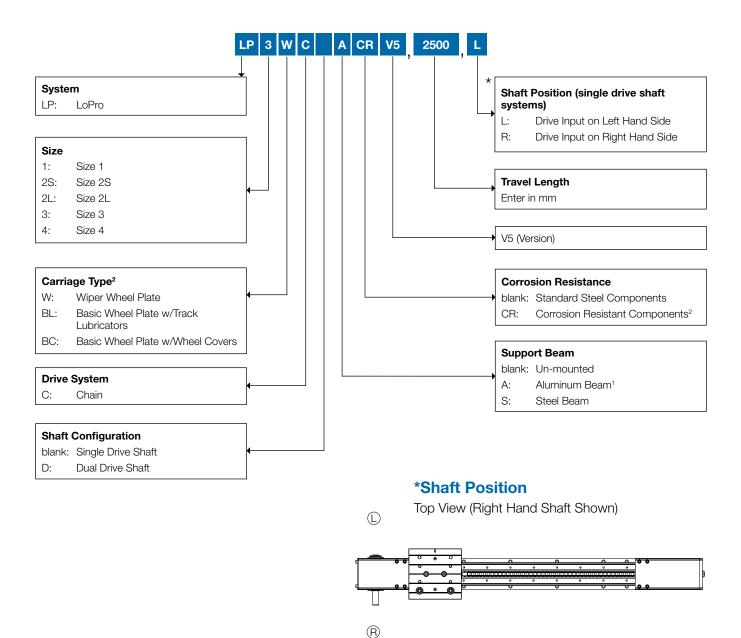

Size	Width	Height	Cross Sectional Area	Moment of Inertia X-Axis	Moment of Inertia Y-Axis	LoPro T-Slot A	LoPro T-Slot B	LoPro T-Slot C	Max Length
1	80.0mm 3.150in	40.0mm 1.575in	1679.9mm ² 2.60in ²	2.772x10⁵mm⁴ .66in⁴	1.007x10 ⁶ mm ⁴ 2.42in ⁴	40.0mm 1.575in	N/A	40.0mm 1.575in	5.6m 18.37ft
2S	100.0mm 3.937in	40.0mm 1.575in	2130.1mm ² 3.30in ²	3.512x10⁵mm⁴ .84in⁴	1.773x10 ⁶ mm ⁴ 4.26in ⁴	59.0mm 2.322in	N/A	60.0mm 2.362in	5.6m 18.37ft
2L	100.0mm 3.937in	80.0mm 3.150in	2698.3mm ² 4.18in ²	2.142x10 ⁶ mm ⁴ 5.15in ⁴	2.974x10 ⁶ mm ⁴ 7.14in ⁴	59.0mm 2.322in	40.0mm 1.575in	60.0mm 2.362in	5.6m 18.37ft
3	120.0mm 4.724in	120.0mm 4.724in	5146.6mm ² 7.98in ²	8.537x10 ⁶ mm⁴ 20.51in⁴	8.490x10 ⁶ mm ⁴ 20.40in ⁴	81.0mm 3.189in	40.0mm 1.575in	80.0mm 3.150in	5.6m 18.37ft




Size 1


LP1BSB

LP2SBSB

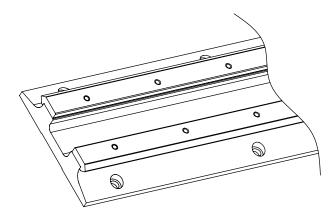


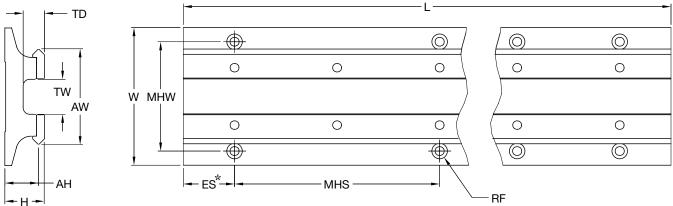
Size	Width	Height	Thickness	Cross Sectional Area	Moment of Inertia X-Axis	Moment of Inertia Y-Axis	Max Length ¹
1	63.5mm	38.1mm	3.1mm	541.0mm ²	1.215x10⁵mm⁴	2.679x10⁵mm⁴	7.3m
	2.50in	1.50in	.12in	.84in ²	.29in⁴	.64in⁴	24ft
2S	101.6mm	38.1mm	3.1mm	774.6mm ²	1.933x10⁵mm⁴	9.045x10⁵mm⁴	12.2m
	4.00in	1.50in	.12in	1.20in ²	.46in⁴	2.17in⁴	40ft
2L	101.6mm	76.2mm	3.1mm	1006.8mm²	9.468x10⁵mm⁴	1.469x10 ⁶ mm ⁴	7.3m
	4.00in	3.00in	.12in	1.56in²	2.27in⁴	3.53in ⁴	24ft
3	127.0mm	101.6mm	4.8mm	1994.1mm ²	3.216x10 ⁶ mm ⁴	4.524x10 ⁶ mm ⁴	14.6m
	5.00in	4.00in	.19in	3.09in ²	7.73in ⁴	10.87in ⁴	48ft
4	152.4mm	101.6mm	6.4mm	2891.4mm ²	4.702x10 ⁶ mm ⁴	8.777x10 ⁶ mm ⁴	14.6m
	6.00in	4.00in	.25in	4.48in ²	11.30in ⁴	21.09in ⁴	48ft

Aluminum beams are 6061-T6 aluminum alloy. Steel beams are structural steel tubing ASTM A500 Grade A. Note: drawings are not to scale.
Sizes 3 & 4 - up to 48ft lengths stock. Longer lengths available upon request. Contact factory for availability.

System Ordering Information: Chain Driven Systems

Ordering Examples


Example 1: LP 3 W C (blank) A CR V5, 2500, L = LP3WCACRV5, 2500, L LoPro Size 3, Wiper Wheel Plate, Chain Driven, Single Shaft, Aluminum Support Beam, Corrosion Resistant, 2500mm Carriage Travel, Shaft Position Left


Example 2: : LP 1 BL C D S (blank) V5, 1000, (blank) = LP1BLCDSV5, 1000 LoPro Size 1, Basic Wheel Plate w/Track Lubricators, Chain Driven, Dual Shaft, Steel Support Beam, Standard Steel Components, 1000mm Carriage Travel

- 1. Aluminum beam not available on size 4.
- 2. Corrosion resistant systems are available with wiper wheel plate only. Corrosion resistant systems on stainless steel beams are custom. Contact Bishop-Wisecarver for details.

Track Plate Assemblies

- Provides the lowest profile linear guidance
- Induction hardened, single edge track is available in either carbon steel or stainless steel
- Track plate assemblies are butt-joinable for long stroke requirements
- Lightweight anodized aluminum substrate

Size	Part Number	Width	Overall Height	Vee Height	Vee Width	Inner Width	Inner Depth	Mounting Hole Width	Mounting Hole Length Space	Mounting Hardware (Low Head Cap Screws)
		w	н	AH	AW	тw	TD	мнพ	MHS	RF
1	M1ATP	50.0mm 1.969in	15.9mm .625in	13.5mm .532in	37.4mm 1.473in	12.7mm .500in	9.3mm .365in	40.0mm 1.575in	76.0mm 2.992in	M3
2	M2ATP	72.0mm 2.835in	22.2mm .873in	19.0mm .748in	54.6mm 2.150in	20.3mm .799in	12.9mm .508in	59.0mm 2.323in	126.0mm 4.961in	M5
3	M3ATP	102.0mm 4.016in	29.4mm 1.156in	25.0mm .985in	71.1mm 2.799in	25.9mm 1.020in	15.8mm .622in	81.0mm 3.189in	152.0mm 5.984in	M6
4	M4ATP	140.0mm 5.512in	36.6mm 1.440in	31.0mm 1.222in	95.8mm 3.773in	39.4mm 1.550in	22.9mm .900in	111.0mm 4.370in	178.0mm 7.008in	M8

*ES = End spacing dimension is contingent upon Track Plate Length.

50

Motion Without Limits®

Hardware

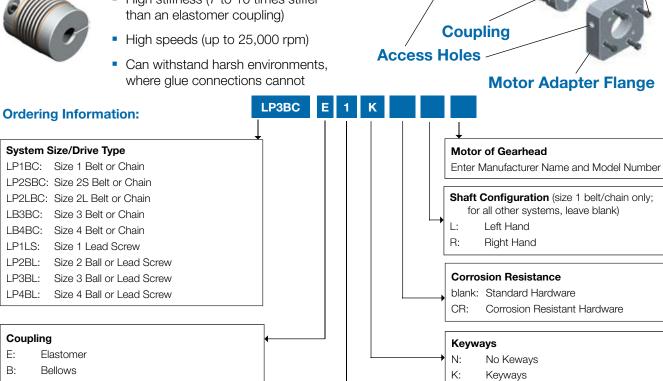
Tools and Accessories

Motor Mounts

- Available to fit ANY manufacturer's motor or gearbox
- Supplied as a kit, complete with shaft coupling and mounting hardware
- Two-piece design
- Dual access holes

Coupling Options:

Elastomer


- Zero backlash
- Vibration dampening
- Three-piece pluggable design
- Ideal choice where high stiffness is not critical

Bellows

E:

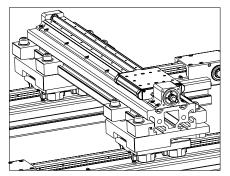
B:

- Zero backlash
- - High stiffness (7 to 10 times stiffer than an elastomer coupling)

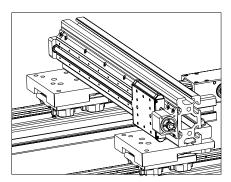
Torque Rating N[•]m / (Bore Range)

LP1BC:	Elastomer	Bellows	LP3BC:	Elastomer	Bellows	LP2BL:	Elastomer	Bellows
1:	8 / (8-16mm)	4 / (3-14mm)	1:	60 / (14-29mm)	50 / (15-34mm)	1:	5 / (5-8mm)	5 / (6-11mm)
			2:	90 / (.750"-29mm)				
LP2SBC:	Elastomer	Bellows				LP3BL:	Elastomer	Bellows
1:	8 / (8-16mm)	10 / (8-16mm)	LP4BC:	Elastomer	Bellows	1:	15 / (.375"750")	10 / (8-16mm)
			1:	150 / (22-38mm)	100 / (22-38mm)	2:	20 / (12mm750")	20 / (10-20mm)
LP2LBC:	Elastomer	Bellows						
1:	30 / (.500"-26mm)	25 / (10-28mm)	LP1LS:	Elastomer	Bellows	LP4BL:	Elastomer	Bellows
2:	45 / (18-26mm)	/	1:	5 / (5-8mm)	2 / (3-10mm)	1:	30 / (.500"-26mm)	40 / (12-28mm)
	. ,		2:		5 / (3-10mm)	2:	45 / (18-26mm)	

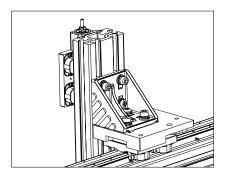
For complete details and dimensions, visit www.bwc.com/products/lopro.html.

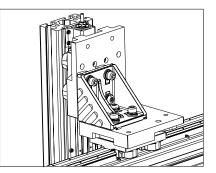

Tools and Accessories

Gantry Brackets


A wide variety of gantry brackets are available to form complete LoPro gantry systems. The following compatibility matrix shows which LoPro system sizes can be mated together, and in which orientations.

Additional parts may be required for complete assembly, including mounting plates, carriage screws, and clamp, T-nut or gusset fastening system parts. Please consult Bishop-Wisecarver's applications engineers for additional assistance. In addition, the LoPro gantry system assembly manual is available at www.bwc.com/library_download_documents.php.


Primary Stage	Secondary System Size							
System Size	1	21/2S	2L	3	4			
1	A, B, C, D	N/A	N/A	N/A	N/A			
2	A, B, C, D	A, B, C, D	A, B, C, D	N/A	N/A			
3	A, B, C, D	A, B, C, D	A, B, C, D	A, B, C, D	D^3			
4	A, B ² , C, D	B ²	В	A, B, C, D	D^3			


A. X-Y (Horizontal Y Stage)

B. X-Y (Perpendicular Y Stage)

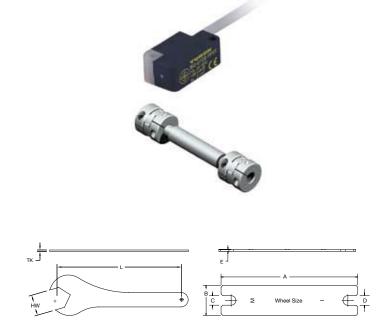
C. X-Z (Z Stage Connected by Support Beam)

D. X-Z (Z Stage Connected by Carriage)

- 1. Size 2 lead screw or ball screw system.
- 2. Size 1 and 2/2S secondary stages can be mounted with T-nuts in the perpendicular orientation on size 4 mounting plates, but cannot have side clamps as reinforcement.
- 3. Though it is physically possible to connect size 4 systems as secondary stages, this arrangement is not recommended.

Tools and Accessories

Other Accessories


- TURCK Bi 2-Q10S-VN6X inductive proximity sensor

 Embeddable rectangular 10mm housing with 2mm sensing range, potted-in cable and 4-wire DC complementary output
- Elastomer line shafts in a variety of lengths and diameters
- Additional custom accessories are available to fit your application needs. Contact our applications engineers for assistance.

Fit-up Wrenches

- Eccentric adjustment mounting tools
- Order bushing wrench and wheel bolt wrench for each wiper wheel plate size (1, 2, 3, and 4)
- For basic wheel plate, use wheel stud wrench and socket wrench to adjust eccentric wheels (socket wrench not supplied)
- Allows for fit-up adjustment between opposing wheels by rotating eccentric bushing

Wiper Wheel Plate

Basic Wheel Plate

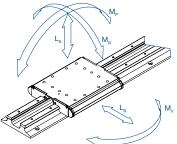
			Wrench Size	Length	Thickness
Wrench Type	Size	Part Number	нพ	L	тк
	1	1PWRB	5.6mm .220in	101.3mm 3.990in	2.3mm .091in
Wheel Bolt	2	2PWRB	8.7mm .344in	114.3mm 4.50in	3.0mm .121in
	3	3PWRB	11.2mm .440in	127.0mm 5.00in	3.4mm .140in
	4	4PWRB	12.8mm .503in	138.9mm 5.50in	3.4mm .140in
	1	1PWRX	11.2mm .439in	101.6mm 4.00in	1.8mm .070in
Eccentric	2	2PWRX	14.3mm .564in	114.3mm 4.50in	2.3mm .090in
Bushing	3	3PWRX	19.1mm .752in	129.5mm 5.10in	2.7mm .110in
	4	4PWRX	22.3mm .877in	147.3mm 5.80in	2.7mm .110in

Wheel Stud Wrench

Part #'s	Wheel Size	А	В	С	D	E
WR1MI	1	7.00	1.50	.474479	.439444	.0747±.0050
WR2MI	2	8.00	1.75	.553558	.565570	.1046±.0050
WR3MI	3	9.00	2.00	.750755	.752757	.1345±.0050
WR4MI	4	9.00	2.00	.868873	.877882	.1345±.0050

Values are in inches. Wrenches are universal for metric and inch.

Technical Reference


Load/Life Relationship

Several factors influence the service life of a LoPro linear motion system. Through research and development spanning over thirty years, Bishop-Wisecarver has devised a simple method to estimate the load/life relationship for a specific DualVee guide mechanism under defined loading conditions. The methodology accounts for the size of the DualVee bearing elements, their relative spacing, and the orientation, location, and magnitude of the load. The formula is based upon clean and well lubricated track conditions; so for applications where lubrication is prohibitive, a derating factor must be applied.

It is important to note that other factors such as maximum velocity, acceleration rates, duty cycle, stroke length, environmental conditions, the presence of shock and vibration, and extreme temperature ranges can all impact service life to varying degrees. As such, the sizing method should be considered only as a guideline for the sizing of DualVee components and assemblies.

Load/Life Equation – Sizing and Selection

The load/life estimation requires a basic understanding of the principles of statics, and the ability to work with free body diagrams. The following life equation is for the purpose of estimating the expected life of the wheel plate and track plate only. System drive components are not accounted for but should also be considered. Drive element load ratings are shown throughout the catalog for each type of system.

Step 1: Calculate all forces applied to the wheel plate

Any forces applied on the wheel plate need to be considered, including inertial forces, gravitational forces, external forces such as tool pressure, impact loading, and payload. If assistance is required in resolving specific loads into the resultant reaction forces, please contact our Applications Engineering staff for support. It is recommended that the Application Data Sheet on page 57 be submitted beforehand, with as much application information detailed as possible.

Step 2: Calculate the load factor for the wheel plate

$$L_{F} = \frac{F_{R}}{F_{R(max)}} + \frac{F_{A}}{F_{A(max)}} + \frac{M_{P}}{M_{P(max)}} + \frac{M_{Y}}{M_{Y(max)}} + \frac{M_{R}}{M_{R(max)}}$$

 L_{E} = Load Factor

Where:

 F_{R} = Applied Radial Load

 F_{A} = Applied Axial Load

 M_{P} = Applied Pitch Moment Load

 M_{y} = Applied Yaw Moment Load

 $M_{\rm R}$ = Applied Roll Moment Load

L_F≤1

	Carriage Assembly Load Capacities									
System Size	Radial Axial Load Load Capacity Capacity F _{R(max)} F _{A(max)}		Pitch Moment Capacity M _{P(max)}	Yaw Moment Capacity M _{Y(max)}	Roll Moment Capacity M _{R(max)}					
	N	N	N∙m	N•m	N•m					
1	2391	988	26	62	27					
2/2S/2L	5194	2450	95	202	100					
3	11564	6668	346	599	372					
4	19012	15684	1220	1478	1174					

Step 3: Calculate estimated life with adjustment factor

Due to varying application load and speed parameters and environmental conditions, the appropriate adjustment factor must be applied to the equation on the following page.

AdjustmentFactor (A_F)Application Conditions1.0 - 0.7Clean, low speed, low shock, low duty0.7 - 0.4Moderate contaminants, medium duty,
medium shock, low to medium vibration,
moderate speed0.4 - 0.1Heavy contamination, high acceleration,
high speed, medium to high shock, high
vibration, high duty cycle

Oscillating motion resulting in less than one full revolution of the wheel under load can cause accelerated wear on the internal bearing elements. Testing of such systems is recommended to verify compatibility of the design with load/ life requirements.

Technical Reference

System	Life Constant L _c						
Size	Inches of Travel Life	Kilometers of Travel Life					
1	2.19 x 10 ⁶	55					
2/2S/2L	3.47 x 10 ⁶	87					
3	5.19 x 10 ⁶	130					
4	6.84 x 10 ⁶	151					

Life =
$$\begin{pmatrix} L_{C} \\ \hline \\ (L_{p})^{3} \end{pmatrix} A_{p}$$

Where: $L_{F} = Load Factor$

 $L_c = Life Constant$

$A_{F} = Adjustment Factor$

Accuracy/Repeatability

The accuracy of a LoPro linear system is dependent upon the mounting surface preparation and the technique used to align the track. LoPro systems can achieve straightness and flatness characteristics to within .004in/foot (0.1mm/ 300mm) when mounting surfaces are adequately prepared. Straight line accuracy of beam mounted LoPro systems are subject to the industry standard straightness and twist tolerances associated with extruded or hot formed sections. As such, the highest straight line precision can be achieved by bolting an unsupported LoPro system to a carefully prepared flat mounting surface. Use of a machined reference edge will help maximize system straightness.

Fit Up Adjustment

The concentric bushings/wheels determine the alignment of the system. They should carry as much of the load as possible. The system should be such that the load is predominantly supported by the wheels radially whenever possible.

Normal adjustment is obtained by rotating the eccentric bushings until all free play is removed from the carriage assembly. When the eccentrics are adjusted and the carriage plate is held firmly in place, one should be able to rotate, by hand, any of the four guide wheels in the system against its mating track. If rotation is not possible, preload on the wheels should be reduced accordingly. Over-tightening of the eccentric adjustment could result in premature bearing failure. Such a condition can exert a force greater than the load rating of the wheel.

Lubrication

Lubrication is the key to maximizing service life in any rolling contact linear bearing design. Internally, DualVee guide wheels are lubricated for life with an extreme pressure, corrosion resistant grease. As such, the main consideration with regards to lubrication is the wheel/track interface. Typically, a light machine oil or an extreme pressure grease does well to minimize wear, stick slip, and corrosion.

LoPro systems are available with two standard wheel plate designs. The wiper wheel plate comes complete with lubricating wiper caps (lubricators consist of an oil saturated felt). The basic wheel plate is available with either wheel covers or track lubricators. Both options include lubrication via oil saturated felt.

Lubrication will maximize the load capacity of an individual bearing element. As such, for any specific loading condition, the presence of lubrication on the guide ways will significantly increase the service life over a non-lubricated configuration under the same loads.

Lubrication will also increase the maximum linear velocity that a guide wheel-based bearing arrangement can travel. In high cycling applications where high speed or acceleration rates are present, lubrication of the wheel/track interface is strongly recommended.

LoPro System Mass Calculation

The following calculations are approximate, and depict the maximum mass (kg) for each size. Exact calculations will vary depending on system configuration.

Beam Mounted

0:	Actuator Type								
Size	Belt	Chain	Lead Screw	Ball Screw					
1	6.3xL + 1.7	6.5xL + 1.8	6.4xL + 1.2	N/A					
2	N/A	N/A	9.8xL + 2.8	9.9xL + 2.8					
2S	9.4xL + 4.1	9.9xL + 4.3	N/A	N/A					
2L	11.3xL + 7.0	11.7xL + 7.5	N/A	N/A					
3	21.9xL + 14.6	22.8xL + 15.7	23.1xL + 7.7	22.4xL + 7.7					
4	32.6xL + 26.3	34.3xL + 27.4	25.7xL + 13.6	25.9xL + 13.6					

Un-Mounted

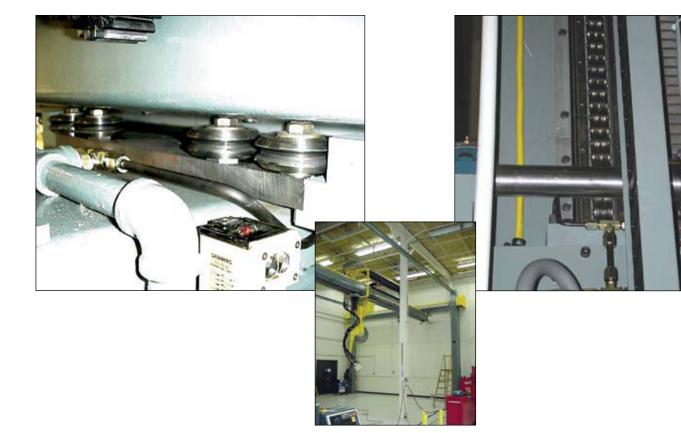
Size	Actuator Type				
	Belt	Chain	Lead Screw	Ball Screw	
1	1.7xL + 1.0	1.9xL + 1.1	1.9xL + 0.6	N/A	
2	N/A	N/A	3.8xL + 1.6	3.8xL + 1.7	
2S	3.3xL + 2.8	3.9xL + 3.1	N/A	N/A	
2L	3.4xL + 5.3	3.9xL + 5.8	N/A	N/A	
3	6.4xL + 10.3	7.3xL + 11.4	7.6xL + 4.1	6.9xL + 4.1	
4	10.1xL + 18.3	11.7xL + 19.4	12.0xL + 9.1	12.2xL + 9.1	

L = Carriage Travel Length (m)

Custom Engineered Linear Motion Systems

In addition to the standard line of LoPro linear system products, Bishop-Wisecarver's capabilities extend beyond these standard systems and into the realm of custom engineered products. Custom engineered solutions from Bishop-Wisecarver range from slight modifications made to standard systems to complete ground-up system designs using DualVee components and/or linear guides.

Value added modifications and capabilities include but are not limited to:


- Multi-axis/Gantry Bracketry
- Limit Switches
- Gearboxes

Bellows

- Elastomer or Bellows Couplings
- Connecting Shafts

- Foot Mounts for Steel Support Beams
- Special Machining
- Track Plating Options
- Custom Wheel Plate Designs
- Custom Design Assistance
- Assembly Services (prior to shipping)

Custom engineered products are typically designed in collaboration with the customer's design team, taking into account the major design parameters including envelope restrictions, material considerations, accuracy, repeatability, thrust requirements, duty cycle, and service life objectives. Non-recurring engineering fees may apply depending on the level of customization involved. Typical projects entail varying levels of prototype sketching, detailing, and prototype design modification as the system specifications are refined. Prior to fabrication, prototype designs are formally detailed and documented for "sign-off" approval by the customer. JIT and Kanban-type arrangements can be accommodated for custom engineered OEM requirements.

This custom LoPro linear guidance system's X-axis uses custom carriage assemblies consisting of eight size 4XL (extra large) DualVee wheels and steel wheel plates rather than the standard size 4, four-wheel aluminum wheel plate assemblies. Each assembly is capable of loads in excess of 7,500 lbs. The Z-axis, with lift capacities of more than 5,000 lbs., features special chain couplers with a leaf chain drive mechanism and solid steel idler sheave with high capacity roller bearings mounted on a steel housing structure.

APPLICATION DATA SHEET

Company:				
Contact:				
Address:				
City.	Stata	Zip Codo:		
City: Phone:	Sidle	2ip code e-mail:		
		0 mail		
System Orientation:	horizontal	vertical		
Load:		N		
Stroke Length:	in	m		
Velocity:	in/s	m/s		
Accel/Decel:	in/s ²	m/s ²		
Linear Accuracy:	in/ft	mm/m		
Repeatability:	in	mm		
Duty Cycle:	in/day	m/day		
Environment:	factory	food grade	clean room	other
Temperature:	°F	C°		
Additional Forces:	lbs	Ν		
Product/Machine Description:				
Additional Requirements:				
Expected Volume:	Date Needed:			

	System Sketch
®	
1	

2104 Martin Way, Pittsburg, CA 94565 phone: 925.439.8272 fax: 925.439.5931 info@bwc.com www.bwc.com **Bishop-Wisecarver Corporation:** Manufacturer of the original DualVee[®] guide wheel and industry leader in guided motion technology, and exclusive North and Central American partner and distributor for HepcoMotion products since 1984.

BISHOPWISECARVER®

Bishop-Wisecarver

DualVee® Guide Wheels LoPro® Linear Motion System MadeWell® Crown Rollers MinVee® Linear Slide System SRX-150 Linear Motion System UtiliTrak® Linear Motion Guide

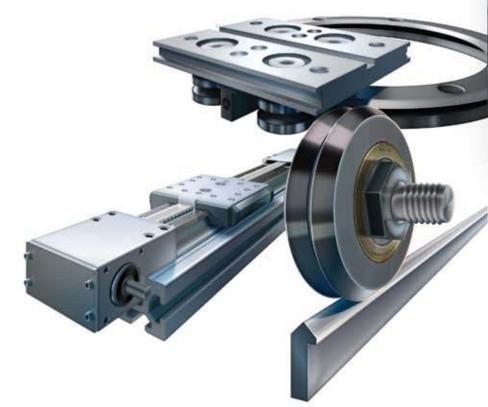
HepcoMotion®

DAPDU2 Double Acting Profile Driven Unit **DLS Driven Linear System** DTS Driven Track System GV3 Linear Guidance and Transmission System HDCB Heavy Duty Compact Beam HDCS Heavy Duty Compact Screw HDLS Heavy Duty Driven Linear System HDRT Heavy Duty Ring Slides and Track System HDS Heavy Duty Slide System MHD Heavy Duty Track Roller Guidance System MCS Machine Construction System PDU2 Profile Driven Unit PRT Precision Ring and Track System PSD120 Profile Screw Driven Unit SBD Sealed Belt Drive Simple-Select® SL2 Stainless Steel Based Slide System

3D CAD DRAWINGS

Download 3D CAD files for our complete product line at www.bwc.com/3dcad.php.

GOT A TOUGH APPLICATION CHALLENGE?


Ask Bud at www.bwc.com/blog/?cat=11.

PRODUCT ORDERS

Please call Bishop-Wisecarver with your specific application requirements. Our technical staff is available to assist with your custom solution.

Bishop-Wisecarver provides a written one year limited warranty assuring the customer that its products conform to published specifications and are free from defects in material or workmanship.

Complete terms and conditions and warranty information is available at www.bwc.com/about_conditions.vp.html

888.580.8272 925.439.8272 www.bwc.com