

SIZING INFORMATION

Sizing and Selecting for Couplings and Safety Couplings

Sizing:

1) Determine torque $(M_{_N})$

$$M_N = M_a \cdot J_{load} \cdot 2.5$$

$$J_{load} + J_{drive}$$

2) Verify resonant frequency (f)

$$\begin{split} f_{coupling} &= \sqrt{C_{coupling}} \\ f_{drive} &= \frac{1}{2\pi} \sqrt{C_{drive} \cdot \frac{(J_{drive} + J_{load})}{(J_{drive} \cdot J_{load})}} \end{split}$$

- M_N Nominal Torque of Coupling
- *M_a* Acceleration Torque of Motor
- C Stiffness value [Nm/rad]
- f Resonant frequency [Hz]
- J_{mot} Motor inertia + 1/2 coupling inertia [kgm²]
- J_{mach} Load inertia + 1/2 coupling inertia [kgm²]

As a rule of thumb, $f_{coupling} \ge 2 \cdot f_{drive}$

3) Apply operating temperature safety factor only for elastomer couplings

Operating Temperature	< 50°C	50°C - 70°C	70°C - 90°C	90°C - 110°C	> 110°C
Multiply M _N by	I	1.3	1.6	1.8	2

Selecting:

1) Determine series of coupling

2) Determine size of coupling based on $M_{_N}$

3) Verify shaft diameters are within range

Ordering Examples:

(When ordering, please include shaft sizes and tolerances)

Standard Coupling

• KM-20

DI = I4 mm k6

D2 = 1.00" +0/-.0005", x 1/8" keyway

Safety Coupling

• SKB-30 DI = 19 mm k6 TA (disengagement torque) = 25 Nm

Drive Shaft Coupling

WD-100
D1 = .500" +/- .0005"
D2 = 32 mm k6
Distance Between Shafts = 915 mm