Determination of the Duty Cycle (ED)

$$D = \frac{t_a + t_c + t_d}{t_{cycle}}$$

If ED < 60% and $(t_1 + t_2 + t_3)$ < 20 minutes, perform a cycle operation selection (S5)

If ED > 60% or $(t_a + t_c + t_d)$ > 20 minutes, perform a continuous operation selection (SI)

Index							
1	Input						
2	Output						
а	Acceleration						
В	Maximum Acceleration						
с	Constant						
d	Deceleration						
m	Mean						
max	Maximum						
n	Nominal						
р	Pause						

Syr	nbol	Unit	Description		
1	ED	%	Duty Cycle		
	fs	-	Shock Factor		
	i	-	Ratio		
	J	kg-cm2	Moment of Inertia		
	n	RPM	Speed		
	t	S	Time		
	т	Nm	Torque		
i	Zh	-	Number of Cycles		
	ŋ	%	Efficiency		

Selection of Optimum Gearbox for a **Continuous Operation (SI)**

Data needed before selection can be performed:

- I. Output profile
- 2. Desired ratio (i)

Calculations to be performed:

I. Mean Output Speed

$$=> n_{2m} = \frac{n_{2a}t_a + n_{2c}t_c + n_{2d}t_d}{t_a + t_c + t_d} = -----$$

2. Root – Mean Output Torque

$$=>T_{2m}=\sqrt[3]{\frac{n_{2a}t_{a}T_{2a}^{3}+n_{2c}t_{c}T_{2c}^{3}+n_{2d}t_{d}T_{2d}^{3}}{n_{2a}t_{a}+n_{2c}t_{c}+n_{2d}t_{d}}}=_$$

Selection Criteria for Gearbox:

I. Mean Output Speed must not exceed the nominal speed rating of the gearbox.

 $n_{2m} \bullet i \le n_{1n}$

2. Mean Output Torque must not exceed the nominal torque rating of the gearbox. $T_{2m} \leq T_{2n}$

See technical data tables for values of n_{1n} and T_{2n}

Selection of Optimum Gearbox for a Cycle Operation (S5)

Data needed before selection can be performed:

- I. Maximum Torque of the motor (T_{IB})
- 2. Output profile
- 3. Desired ratio (i)
- 4. Inertia of the load $(J_1)^*$
- 5. Inertia of the motor $(J_{motor})^*$

*optional

Calculation to be perf	formed:			Zh	<	1000	=>	fs = 1.0
	Zh = 3600	1000	<	Zh	<	1500	=>	fs = 1.1
I.Shock Factor (fs)		1500	<	Zh	<	2000	=>	fs = 1.1 fs = 1.3 fs = 1.6
	t _{cycle}	2000	<	Zh	<	3000	=>	fs = 1.6
		3000	<	Zh	<		=>	fs = 2.0

2. Maximum Output Torque $T_{2max} = T_{1B} \cdot i \cdot fs \cdot \eta =$

Selection Criteria for Gearbox:

I. Maximum Output Speed must not exceed the $n_{2c} \cdot i \le n_{1max}$ maximum speed rating of the gearbox.

$$T_{2max} \leq T_{2B}$$

 $J_{motor} \approx J_1 + \frac{J_L}{i^2}$

- 2. Maximum Output Torque must not exceed the maximum torque rating of the gearbox.
- 3. *(optional)* Match inertia of the motor to the inertia of the load.

See technical data tables for values of η , n_{1max} , $T_{2B'}$ and J_1