Kollmorgen Direct Drive Linear Motor Selection Guide

with AKD™ Servo Drive Systems

Kollmorgen. Every solution comes from a real understanding of OEM challenges facing machine designers and users.

The ever-escalating demands of the marketplace mean increased pressure on machine designers and users at every turn. Time constraints. Demands for better performance. Having to think about the next-generation machine even before the current one is built. While expectations are enormous, budgets are not. Kollmorgen's innovative motion solutions and broad range of quality products help engineers not only overcome these challenges but also build truly differentiated machines.

Because motion matters, it's our focus. Motion can distinctly differentiate a machine and deliver a marketplace advantage by improving its performance. This translates to overall increased efficiency for your application. Perfectly deployed machine motion can make your customer's machine more reliable and efficient, enhance accuracy and improve operator safety. Motion also represents endless possibilities for innovation. We've always understood this potential, and thus have kept motion at our core, relentlessly developing products that offer precision control of speed, accuracy and position in machines that rely on complex motion.

Because Motion Matters™

Removing the Barriers of Design, Sourcing, and Time

At Kollmorgen, we know that OEM engineers can achieve a lot more when obstacles aren't in the way. So, we knock them down in three important ways:

Integrating Standard and Custom Products

The optimal solution is often not clear-cut. Our application expertise allows us to modify standard products or develop totally custom solutions across our whole product portfolio so that designs can take flight.

Providing Motion Solutions, Not Just Components

As companies reduce their supplier base and have less engineering manpower, they need a total system supplier with a wide range of integrated solutions. Kollmorgen is in full response mode with complete solutions that combine programming software, engineering services and best-in-class motion components.

Global Footprint

With direct sales, engineering support, manufacturing facilities, and distributors across North America, Europe, Middle East, and Asia, we're close to OEMs worldwide. Our proximity helps speed delivery and lend support where and when they're needed.

Financial and Operational Stability

Kollmorgen is part of Danaher Corporation, our \$13B parent company. A key driver in the growth of all Danaher divisions is the Danaher Business System, which relies on the principle of "kaizen" – or continuous improvement. Using world-class tools, cross-disciplinary teams of exceptional people evaluate processes and develop plans that result in superior performance.

Table of Contents

•	Direct Drive Linear (DDL) Motor	4
	AKD [™] Servo Drive	10
•	Co-Engineering Capabilities	14
•	Direct Drive Linear Motor Summary	15
•	DDL Ironless - Non-cooled Data and Dimensions	
	IL06 Series	18
	IL12 Series	20
	IL18 Series	22
	IL24 Series	26
•	Ironless Magnet Ways	28
•	DDL Ironcore Data and Dimensions	
	ICD05 Series	32
	ICD10 Series	34
•	ICD Magnet Ways	36
•	DDL Ironcore - Non-cooled Data and Dimensions	
	IC11 Series	40
	IC22 Series	42
	IC33 Series	46
	IC44 Series	50
	DDL Ironcore - Water-cooled Data and Dimensions	
	IC11 Series	54
	IC22 Series	56
	IC33 Series	60
	IC44 Series	64
	Ironcore Magnet Ways	68
•	Wiring and Output	70
•	High Flex Cable Sets	72
	Application Sizing	74
•	Model Nomenclature	78
•	MOTIONEERING® Application Engine	81

Direct Drive Linear Motor

Our direct drive linear motor series provide new dimension in performance with high throughput, accuracy, and zero maintenance. The product line are frameless, permanent magnet, three phase, brushless servomotors. The product line consists of two fundamental constructions, Ironless (slotless) and Ironcore. Ironless motors have no attractive force between the framless components and zero cogging for the ultra smooth motion. Ironcore motors provide the highest force per frame size. The feature a patented anti-cogging design which yields extremely smooth operation.

The Benefits of Direct Drive Linear Motor

Zero Maintenance with Greater Accuracy and Higher Bandwidth	Smoother velocity and reduced audible noise
	 Power transmission without backlash
	 Transmission elements such as couplings, toothed belts, ball/lead screws, rack & pinions, and other fitted components can be eliminated
	No gears or screws, no lubrication required
	 Improved machine reliability
Wide Range of Sizes and Force to Cover any Linear Application	Increased performance for the entire system
	• Flat, compact drive solution
	Easily mix / match motors and drives
	• Real-life acceleration up to 10 G
Simplified, High Force Permanent Magnet Design	 Higher bandwidth and faster response than ball/lead screws or rack & pinion solutions
	 Rapid indexing of heavy loads with peak force up to 12,500 N (2,800 lb)
	Reduced audible noise, fewer parts and lower cost of ownership
	More compact machine design

Direct Drive Linear Motor Overview

Kollmorgen Direct Drive Linear DDL Motor Series

Kollmorgen supplied its first linear motors in the late 1970's for use in precision X-Y tables and coating systems. These were brush DC motors using the Kollmorgen patented push-through commutator bar method. This led to development in the early 1980's of the brushless versions of the linear motor which were used in film processing applications where smooth, high stiffness, linear motion was required. During the past 30 years, advances in permanent magnet material, power semiconductors, and microprocessor technology have been the enablers for increased performance and lower costs for linear motors.

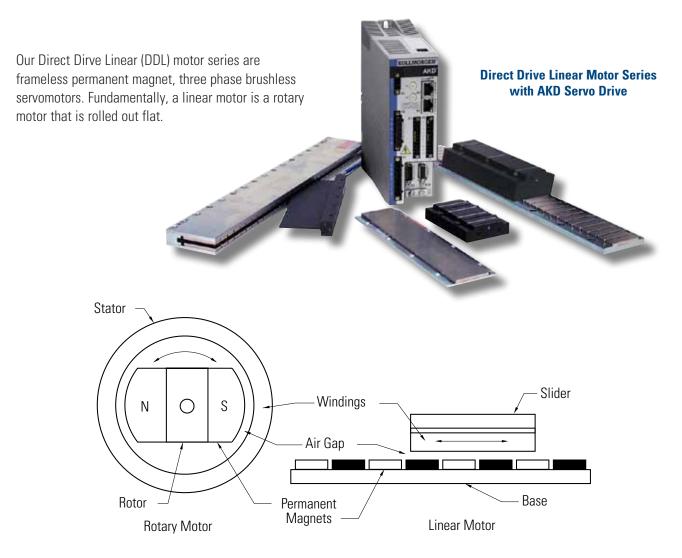
DDL motors series comply with the Low Voltage Directive 73/23/EEC for installation in a machine. Safety depends upon installing and configuring motor per the manufacturer's recommendations. The machine in which this product is to be installed must conform to the provisions of EC directive 89/336/EEC. The installer is responsible for ensuring that the end product complies with all the relevant laws in the country where the equipment is installed.

Standard Product Features

Ironless:

- Peak force 60 to 1600 N (13.6 to 360 lbf)
- Continuous force 21 to 450 N (4.6 to 101lbf)
- Zero cogging
- Zero attractive force
- Smooth motion for speed as low as 1 micron/second (0.00004 in/sec)
- Low mass coil assembly for high acceleration

Ironcore:


- Peak force IC series: 320 to 8407 N (71.9 to 1890 lbf)
- Continuous force IC series: 144 to 6916 N (32.4 to 1555 lbf)
- Peak force ICD series: 165 to 1099 N (38 to 254 lbf)
- Continuous force ICD series: 57.0 to 315 N (12.8 to 70.8 lbf)
- Patented anti-cogging technique for minimal cogging without magnet skewing
- High motor constant (Km)
- · High force density
- ICD series advantage:
 - Very low profile
 - Low attraction force
 - Suitable to replace many Ironless applications

All Motors:

- Zero contact, zero maintenance, brushless design
- 3 phase sinusoidal commutation
- Peak accelerations easily above 10 G
- High position accuracy and resolution
- · Very low settling time
- Low thermal losses
- · Modular magnet design

Standard Options:

- · Hall effect feedback
- Thermal protection
 - Thermistor
 - Thermostat (Ironcore)
- Supplemental air or water cooling (Ironcore)
- Cable options
- Magnet way covers for easy cleaning (Ironcore)
- FM approved, hazardous environment

Rotary Motor Rolled Out Flat

The two primary components of permanent magnet brushless rotary motors are the stator (primary coils) and the rotor (secondary or rotating magnets). In brushless linear motors the rotor is rolled out flat to become the magnet track (also called the magnet way). The primary coils of the rotary motor are rolled out flat to become the coil assembly (also sometimes called the slider).

In most brushless linear motor applications it is typical for the magnet way to be stationary and the coil assembly to be in motion, because of the relative masses of the two components. But it is also perfectly acceptable and sometimes advantageous to reverse this arrangement. The basic electromagnetic operating principles are the same in either case and are identical to those of a rotary motor.

Direct Drive Linear Motor Overview

Direct Drive Linear Motor Options

Two types of linear motors are available, **Ironcore** and **Ironless**. Each one provides characteristics and features that are optimal depending upon the application. Ironcore motors have coils wound on silicon steel laminations, to maximize the generated force, with a single sided magnet way.

Using a patented electromagnetic design, DDL linear motors have the highest rated force per size, a high Km motor constant (equals low thermal losses), and low cogging forces without the need for skewing of the magnets. The high thrust forces possible with these motors make them ideal for accelerating and moving high masses, and maintaining stiffness during machining or process forces. Ironless motors have no iron, or slots for the coils to be wound on.

Therefore, these motors have zero cogging, a very light mass, and absolutely no attractive forces between the coil assembly and the magnet way. These characteristics are ideal for applications requiring very low bearing friction, high acceleration of lighter loads, and for maximizing constant velocity, even at ultra low speeds. The modular magnet ways consists of a double row of magnets to maximize the generated thrust force and to provide aflux return path for the magnetic circuit.

Feedback Types

All brushless motors require feedback for commutation. The conventional rotary motor typically utilizes a resolver mounted on the rear of the motor or Hall effect devices mounted integrally in the coil windings. For a linear motor, commutation feedback can also be accomplished with a variety of methods. Digital or linear Hall effect devices are available from Kollmorgen for the DDL motor series which allow the drive electronics to commutate the linear motors in a manner identical to rotary motors.

For exceptionally smooth motion requirements, sinusoidal drive electronics such as the Kollmorgen's AKD series, using digital Hall effects, provide sinusoidal drive currents to the motor for the best constant force and velocity performance. As an alternative, it is typical for linear motor applications to have a linear encoder present in the system for position feedback. It is increasingly common today for drive amplifiers, such as the AKD Digital amplifier, to derive the necessary commutation information directly from this linear encoder, either with or without supplemental digital Hall effect devices on startup. Other types of feedback used on linear motor applications include linear Inductosyns, laser interferometers, and LVDT.

Advantages

Wide Speed Range

Since the frameless parts of the linear motor are non-contact, and no limitations of a mechanical transmission are present, both very high speeds and very low speeds are easily obtainable. Speeds are truly not limited by the motor. Instead, by eliminating the mechanical transmission, speed becomes limited by other elements in the system such as the linear bearings, and the achievable bandwidth from any feedback devices. Application speeds of greater than 5 meters per second (200 in./sec.) or less than 1 micron per second (.00004 in./sec.) are typically achievable. In comparison, mechanical transmissions such as ball screws are commonly limited to linear speeds of 0.5 to 0.7 meters per second (20-30 in./sec.) because of resonances and wear. In addition to a wide speed range, linear motors, both ironcore and ironless, have excellent constant velocity characteristics, typically better than ± 0.01% speed variation.

High System Dynamics

In addition to high speed capability, direct drive linear motors are capable of very high accelerations. Limited only by the system bearings, accelerations of 3 to 5 G are quite typical for the larger motors and accelerations exceeding 10 G are easily achievable for smaller motors.

Easy Selection process:

- Determine peak and continuous force required for your applications (see our applications section on pages 74-77 or use MOTIONEERING, our online sizing and selection software tool)
- 2. Use the motor selection guide on pages 15-17 to choose your motor
- 3. Refer to the appropriate pages in the data publication for technical details
- 4. Build model number for ordering using pages 78-80

Smooth Operation and Positional Accuracy

Both ironless and ironcore motors exhibit very smooth motion profiles due to the inherent motor design of Kollmorgen's DDL series. Cogging, which is a component of force, is greatly reduced in the ironcore designs and is zero in the ironless designs. As a result, these direct drive linear motors provide very low force and velocity ripple for ultra smooth motion. Positioning accuracies are limited only by the feedback resolution, and sub-micron resolutions are commonly achievable.

Unlimited Travel

With the DDL motor series, magnet ways are made in 5 modular sections: 64mm, 128mm, 256mm, 512mm and 1024mm long. Each module can be added in unlimited numbers to any other module to allow for unlimited travel. Whether the travel required is 1mm (0.04 inches) or 100 meters (330 feet), the DDL series can accommodate the need.

No Wear or Maintenance

Linear motors have few components, therefore the need for ball screw components such as nuts, bearing blocks, couplings, motor mounts and the need to maintain these components have been eliminated. Very long life and clean operation, with no lubrication or maintenance of these parts are the result.

Integration of Components is Much Simpler

Frameless linear motors require much fewer components than rotary motors with mechanical transmissions. A 0.8mm airgap (0.031 inches) for the ironcore design and 0.5mm airgap (0.020 inches) for the ironless design is the only alignment of the frameless linear motor components that is necessary. No critical alignments are required as with ball screws. Straightness of travel as provided by the system linear bearings is more than sufficient for the Kollmorgen linear motors.

Typical Applications for Linear Motors Include:

Machine ToolMeaDrillingCoorMillingElecGrindingPickLaser cuttingComCam grindingScreen

Semiconductor
Wafer handling process

Wafer-inspection
Wafer slicing
Tab bonding

Wire bonding lon implantation Lithography

Textile
Carpet tufting

Measurement/inspection

Coordinate measurement machines

Electronic assembly
Pick-and-place machines
Component insertion
Screen printers
Adhesive dispensers
PC board inspection, drilling

Other applications include:

Flight Simulators Acceleration sleds

Catapult

G-Force measurement

AKD™ Servo Drive

Our AKD series is a complete range of Ethernet-based servo drives that are fast, feature-rich, flexible and integrate quickly and easily into any application.* AKD ensures plug-and-play commissioning for instant, seamless access to everything in your machine. And, no matter what your application demands, AKD offers industry-leading servo performance, communication options, and power levels, all in a smaller footprint.

This robust, technologically advanced family of drives delivers optimized performance when paired with our best-in-class components, producing higher quality results at greater speeds and more uptime.

^{*} Patents pending.

The Benefits of AKD Servo Drive

The Delicing of AVD Selvo Drive	
Optimized Performance in Seconds	Auto-tuning is one of the best and fastest in the industry
	 Automatically adjusts all gains, including observers
	 Immediate and adaptive response to dynamic loads
	 Precise control of all motor types
	 Compensation for stiff and compliant transmission and coupling
Greater Throughput and Accuracy	 Up to 27-bit-resolution feedback yields unmatched precision and excellent repeatability
	 Very fast settling times result from a powerful dual processor system that executes industry-leading and patent pending servo algorithms with high resolution
	 Advanced servo techniques such as high-order observer and bi-quad filters yield industry-leading machine performance
	 Highest bandwidth torque-and-velocity loops. Fastest digital current loop in the market
Easy-to-Use Graphical User Interface (GUI) for Faster Commissioning and Troubleshooting	 Six-channel real-time software oscilloscope commissions and diagnoses quickly
	 Multi-function Bode Plot allows users to quickly evaluate performance
	 Auto-complete of programmable commands saves looking up parameter names
	 One-click capture and sharing of program plots and parameter settings allow you to send machine performance data instantly
	 Widest range of programming options in the industry
Flexible and Scalable to Meet Any Application	• 3 to 96 Arms continuous current; 9 to 192 Arms peak
	 Very high power density enables an extremely small package
	 True plug-and-play with all standard Kollmorgen servomotors and positioners
	 Supports a variety of single and multi-turn feedback devices— Smart Feedback Device (SFD), EnDat2.2, 01, BiSS, analog Sine/ Cos encoder, incremental encoder, HIPERFACE®, and resolver
	 Tightly integrated Ethernet motion buses without the need to add large hardware: EtherCAT®, SynqNet®, Modbus/TCP, and CANopen®
	 Scalable programmability from base torque-and-velocity throug multi-axis master

AKD Servo Drive

The AKD servo drive delivers cutting-edge technology and performance with one of the most compact footprints in the industry. These feature-rich drives provide a solution for nearly any application, from basic torque-and-velocity applications, to indexing, to multi-axis programmable motion with embedded Kollmorgen Automation Suite. The versatile AKD sets the standard for power density and performance.

Best-in-Class Components

AKD works seamlessly with Kollmorgen motors and positioners - well-known for quality, reliability, and performance.

AKD™ Servo Drive

Modbus/TCP

Industry-leading power density

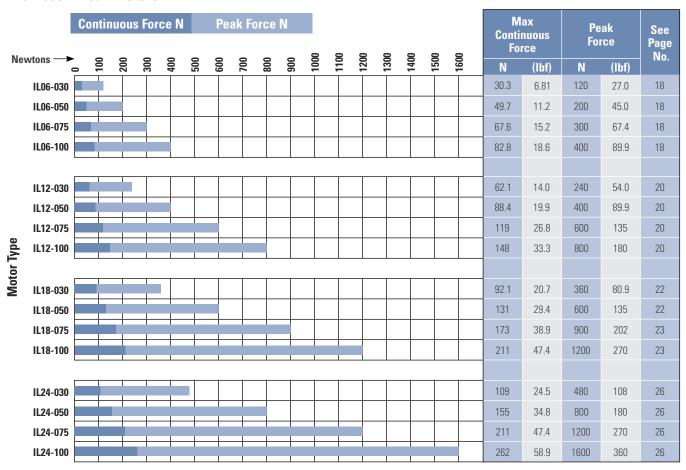
General Specifications

u	deneral Specifications																											
	120 / 240 Vac 1 & 3Ø (85 -265 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)		Internal Regen (Watts) (Ohms)																				Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)
	AKD- ■ 00306	3	9	1100	0	0	168 (6.61)	57 (2.24)	153 (6.02)	184 (7.24)																		
	AKD-■00606	6	18	2000	0	0	168 (6.61)	57 (2.24)	153 (6.02)	184 (7.24)																		
	AKD-■01206	12	30	4000	100	15	195 (7.68)	76 (2.99)	186 (7.32)	215 (8.46)																		
	AKD- ■ 02406	24	48	8000	200	8	250 (9.84)	100 (3.94)	230 (9.06)	265 (10.43)																		
	480 Vac 3Ø (342 -528 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)		Internal Regen (Watts) (Ohms)		Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)																		
	AKD- ■ 00307	3	9	2000	100	33	256 (10.08)	70 (2.76)	186 (7.32)	221 (8.70)																		
	AKD- ■ 00607	6	18	4000	100	33	256 (10.08)	70 (2.76)	186 (7.32)	221 (8.70)																		
	AKD-■01207	12	30	8000	100	33	256 (10.08)	70 (2.76)	186 (7.32)	221 (8.70)																		

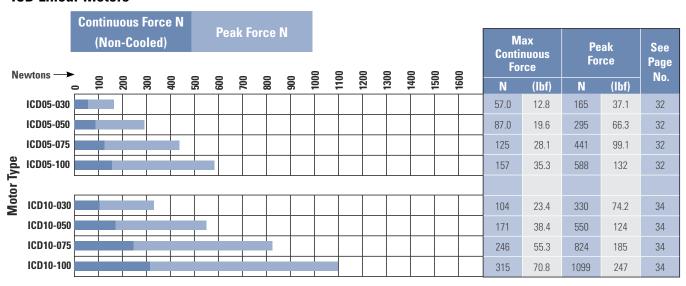
310 (12.20) 105 (4.13) 229 (9.02) 264 (10.39) AKD-**■**02407 24 16,000 48 200 23 AKD-■04807 32,000 48 400 AKD-■09607 96 192 64,000 800 Note: For complete AKD model nomenclature, refer to page 80.

Co-Engineering Capabilities

Because Kollmorgen offers the highest quality and broadest range of best-in-class motion components, we can supply standard, modified or customized solutions to meet any application need.

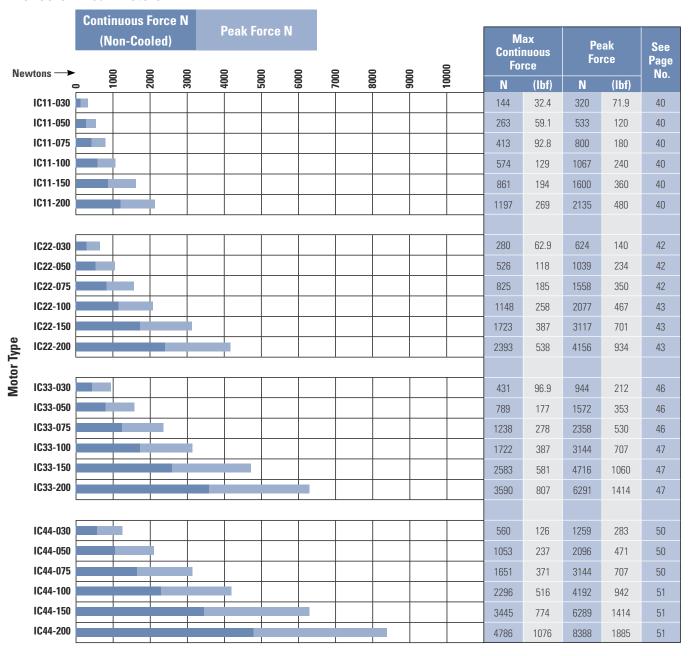

We have co-engineer solutions to meet your most difficult challenges and advance your competitive position. Drawing on a wealth of knowledge and expertise, our engineering support team will work alongside with you to build a solution that differentiates your machine and improves your bottom line.

Here are just few examples of how Kollmorgen delivers real value to companies likes yours:

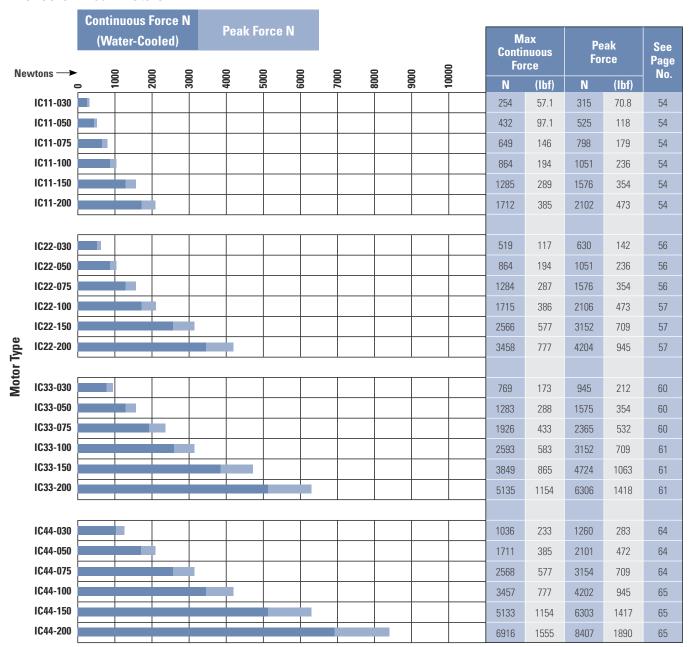

What You Need	Why Motion Matters	Kollmorgen Co-Engineering Results				
30% Increase in Throughput	 Low inertia servomotors High bandwidth servo loops Simple, accurate, graphical programming tools 	Using the Kollmorgen Automation Suite [™] graphical camming design tool, Pipe Network and low-inertia AKM servomotors, a major supplier of medical equipment increased throughput by more than 30% while improvin accuracy and reducing scrap.				
50% Increase in Accuracy and Quality	 Low cogging servomotors Advaced observers and bi-quad filters Fast control loop update rates (.67µs) 	Using our AKD servo drive, a next-generation CT scanning manufacturer achieved more than 50% improvement in velocity ripple to produce the most accurate and detailed medical images possible while overcoming an extremely high moment of inertia.				
25% Increase in Reliability (Overall Equipment Effectiveness)	 Innovative Cartridge Direct Drive Rotary™ DDR motor Eliminating parts on the machine No additional wearing components 	Using Kollmorgen's award-winning Cartridge DDR sevomotor technology, we eliminated more than 60 parts in a die-cutting machine and increased the OEE by 25% and throughput by 20%.				
50% Reduction in Waste	 Superior motor/drive system bandwidth DDR technology: eliminates gearbox 20X more accurate than geared solution 	We helped a manufacturer of pharmaceutical packaging machines incorporate Housed DDR motors to increase the throughput by 35% and reduce scrap by more than 50% through more accurate alignment of the capsules.				

Direct Drive Linear Motor Summary

Ironless Linear Motors



ICD Linear Motors



Direct Drive Linear Motor Summary

Ironcore Linear Motors

Ironcore Linear Motors

IL06 Performance Data

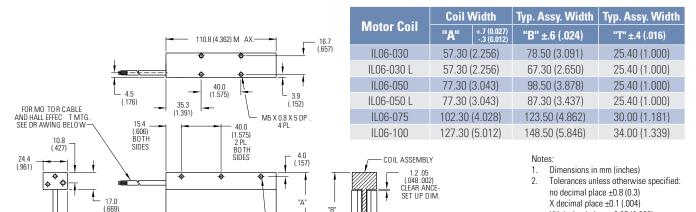
Ironless Non-Cooled Motors Series

Rated Perfomance	Symbol	Units	IL06-030		IL06	-050	IL06-075		IL06-100				
	_	N	120		20	00	300		40	00			
Peak Force	Fp	lbf	27		45		68		90				
0 1 5 0 7 (4)	-	N	30).3	49.7		67.6		82.8				
Continuous Force @ Tmax (1)	Fc	lbf	6.	81	11.2		15.2		18	3.6			
Motor Constant	Km	N√W	5	.6	8	.0	10).2	12	2.1			
		Electrical Spe	cificati	ons (2)									
		Winding Code	A1	A 4	A 1	A 4	A 1	A 4	A1	A 4			
Peak Current	lp	Arms	7.1	14.2	7.0	14.0	7.0	14.0	7.0	14.0			
Continuous Current @Tmax	lc	Arms	1.8	3.6	1.7	3.5	1.6	3.2	1.5	2.9			
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	6.1	1.5	8.6	2.2	11.7	2.9	14.7	3.7			
Electrical Inductance ±20%	L	mH L-L	1.3	0.33	3.00	0.75	5.00	1.25	7.00	1.75			
Back EMF Constant	17	Vpeak/m/s L-L	13.7	6.9	23.3	11.6	34.9	17.5	46.5	23.3			
@ 25°C±10%	Ke	Vpeak/in/sec L-L	0.35	0.17	0.59	0.30	0.89	0.44	1.18	0.59			
Force Constant @ 25°C±10%	kf	N/Arms	16.8	8.4	28.5	14.3	42.8	21.4	57.0	28.5			
Force Constant @ 25°C±10%	KI	lbf/Arms	3.8	1.9	6.4	3.2	9.6	4.8	12.8	6.4			
		Mechanical S	Specific	ations									
Coil Assembly Mass ±15%	Mc	kg	0.27		0.32		0.38		0.	45			
COII ASSEIIDIY IVIdSS ±10%	IVIC	lbs	0.6		0.7		0.8		1.	.0			
Magnetic Way Type			MV		MW		MW		MW075		MW075		
iviagiletic vvay type			030	030L	050	050L							
Magnetic Way Mass ±15%	Mw	kg/m	9.4	7.3	12.2	10.2	18.9		27.3				
Waynetic way was ±13/0	IVIVV	lb/in	0.51	.040	0.68	0.56	1.0	05	1.	51			
	ı	Figures of Merit a	nd Addi	tional D	ata								
Electrical Time Constant	Te	ms	0.	21	0.	35	0.	43	0.	48			
Max.Theoretical Acceleration (3)	Amax	g's	45	45.2		3.6	80).6	90	0.7			
Magnetic Attraction	Fa	kN	()	()	()	(0			
iviagnetic Attraction	Id	lbf	()	()	()	(0			
Thermal Resistance (4) (Coils to External Structure)	Rth	°C/Watt	1.	1.61		1.61		1.61 1.26		1.0	04	0.87	
Max. Allowable Coil Temp. (4)	Tmax	°C	13	30	13	30	130		130				

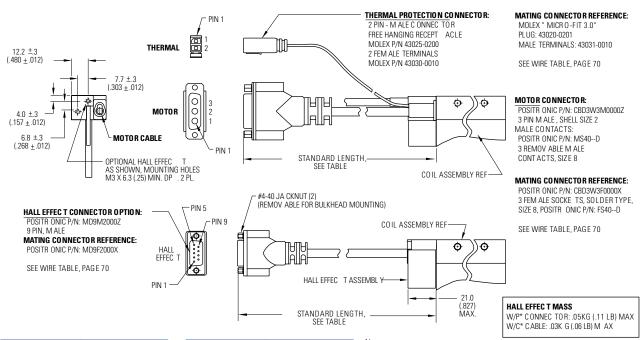
Notes

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.


^{4.} Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

XX decimal place ±0.05 (0.002)


IL06 Outline Drawings

M5 X 0.8 X 5 DP 6 PL., 3 PER SIDE

Ironless Non-Cooled Motors Series

Termination and Hall Effect Options

Connector Option							
Connector	Length						
P1	400 (16)						
P2	200 (8)						
P3	100 (4)						
P4	1200 (48)						

ead Option
Length
400 (16)
200 (8)
100 (4)
1200 (48)

Note:
Cables exiting motor and
hall effects are not dynamic
flex cables. For high life flex
extension cables, see page 72

COIL TO MAGNET AIRGAP 0.74 REF TYP. FOR 030, -050 1.12 REF TYP. FOR -075 AND -100

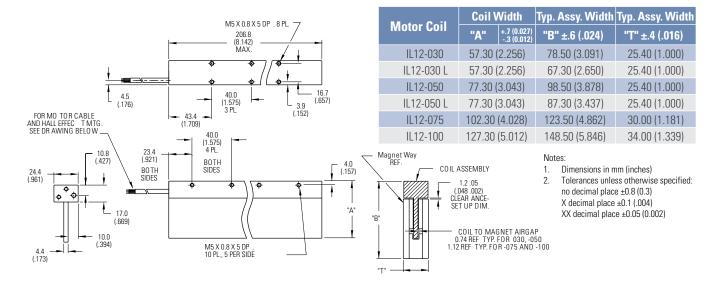
MAGNET WAY REF.

IL12 Performance Data

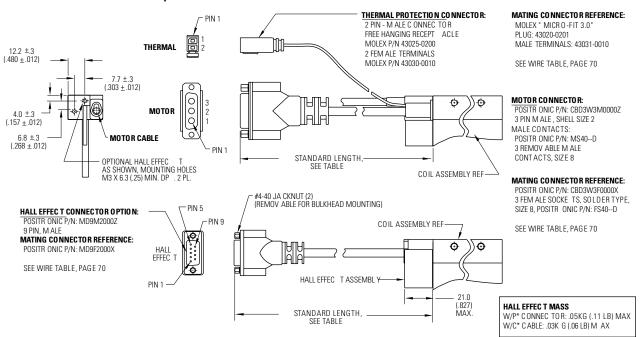
Ironless Non-Cooled Motors Series

Rated Perfomance	Symbol	Units	IL12-030		IL12-050			IL12-075			IL12-100		
Peak Force	Γn	N	N 240 Ibf 54		400		600			800			
reak folce	Fp	lbf			90			135			180		
Continuous Force @ Tmax (1)	Fc	N		62.1			88.4		119			148	
Continuous Force @ Imax (1)	FG	lbf		14.0			19.9			26.8		33	3.3
Motor Constant @ 25°C	Km	N√W		7.8			11.3			14.5		17	.2
		Electric	al Spe	cificat	ions (2)							
		Winding Code	A1	A2	A 4	A1	A2	A 4	A1	A2	A 4	A2	A 4
Peak Current	lp	Arms	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.1	14.0	28.1
Continuous Current @Tmax	lc	Arms	1.8	3.7	7.4	1.6	3.1	6.2	1.4	2.8	5.6	2.6	5.2
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	12.2	3.1	0.8	17.2	4.3	1.1	23.3	5.8	1.5	7.4	1.8
Electrical Inductance ±20%	L	mH L-L	2.60	0.65	0.16	6.00	1.5	0.38	10.0	2.5	0.63	3.5	0.88
Back EMF Constant	Ke	Vpeak/m/s L-L	27.5	13.8	6.9	46.5	23.3	11.6	69.8	34.9	17.5	46.5	23.3
@ 25°C±10%	Ve	Vpeak/in/sec L-L	0.70	0.35	0.17	1.18	0.59	0.30	1.77	0.89	0.44	1.18	0.59
Force Constant	Kf	N/Arms	33.7	16.9	8.4	57.0	28.5	14.3	85.5	42.8	21.4	57.0	28.5
@ 25°C±10%	NI	lbf/Arms	7.6	3.8	1.9	12.8	6.4	3.2	19.2	9.6	4.8	12.8	6.4
		Mecha	nical S	pecifi	cations								
Coil Assembly Mass ±15%	Mc	kg	0.42		0.52		0.65		0.77				
Coll Assembly Mass ±13 /0	IVIC	lbs	0.9		1.1			1.4			1.7		
			MW		MW			MW075			MW100		
Magnetic Way Type			030		030L	050	(050L					
		kg/m	9.4		7.3	12.2 10.2 18.9		18.9		27.3			
Magnetic Way Mass ±15%	Mw	lb/in	0.51		0.40	0.68		0.56	1.05			1.51	
		Figures of N	lerit aı	nd Add	itional	Data							
Electrical Time Constant	Te	ms			0.35			0.43		0.48			
Max.Theoretical Acceleration (3)	Amax	g's	58.2			78.4			94.1		10)6	
	_	kN	0			0			0		()	
Magnetic Attraction	Fa	lbf		0			0			0		()
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.804		0.629			0.519			0.433	
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130		13	30	

Notes


- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.


^{4.} Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IL12 Outline Drawings

Ironless Non-Cooled Motors Series

Termination and Hall Effect Options

Connector Option							
Connector	Length						
P1	400 (16)						
P2	200 (8)						
P3	100 (4)						
P4	1200 (48)						

ead Option
Length
400 (16)
200 (8)
100 (4)
1200 (48)

Note:
Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

IL18 Performance Data

Ironless Non-Cooled Motors Series

Rated Perfomance	Symbol	Units	IL18-030		IL18-050						
Dools Force	F	N		360 81			60	0			
Peak Force	Fp	lbf						13	5		
O	Г.	N		92.1		131					
Continuous Force @ Tmax (1)	Fc	lbf		20).7		29.4				
Motor Constant @ 25°C	Km	N√W		9	.7		13.8				
	El	ectrical Specifica	tions (2)							
		Winding Code	A1	A2	А3	A 4	A1	A2	A3	A 4	
Peak Current	lp	Arms	7.1	14.3	21.4	42.8	7.0	14.0	21.0	42.1	
Continuous Current @Tmax	lc	Arms	1.8	3.6	5.5	11.0	1.5	3.1	4.6	9.2	
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	18.2	4.6	2.0	0.5	25.7	6.4	2.9	0.7	
Electrical Inductance ±20%	L	mH L-L	3.8	0.95	0.42	0.11	9.00	2.25	1.00	0.25	
Back EMF Constant	IV -	Vpeak/m/s L-L	41.2	20.6	13.7	6.9	69.8	34.9	23.3	11.6	
@ 25°C±10%	Ke	Vpeak/in/sec L-L	1.05	0.52	0.35	0.17	1.77	0.89	0.59	0.30	
Face Constant @ 2500, 400/	Kf	N/Arms	50.5	25.3	16.8	8.4	85.5	42.8	28.5	14.3	
Force Constant @ 25°C±10%	KI	lbf/Arms	11.4	5.7	3.8	1.9	19.2	9.6	6.4	3.2	
	M	lechanical Specifi	cations	;							
Coil Assembly Mass ±15%	Mc	kg		0.57			0.72				
COIL ASSEMBLY MIGSS ±10%	IVIC	lbs	1.3				1.6				
			MW				MW				
Magnetic Way Type			030		030L			0	050L		
		kg/m	9.		7.3	3	12	2	10	2	
Magnetic Way Mass ±15%	Mw	lb/in	0.!		0.4		0.6		0.56		
	Figure	s of Merit and Add	' litional	Data							
Electrical Time Constant	Te	ms			21			0.3	 35		
Max.Theoretical Acceleration (3)	Amax	gʻs		64.5				84	.9		
		kN		0				0			
Magnetic Attraction	Fa	lbf						0			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.5	536		0.419				
Max. Allowable Coil Temp. (4)	Tmax	°C	130			130					

Notes

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

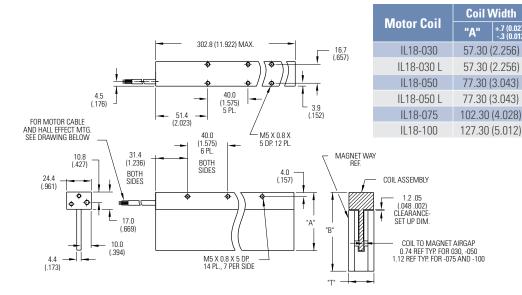
^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

^{4.} Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

Rated Perfomance	Symbol	Units IL18-075			IL18-100					
Peak Force			900			1200				
reak fulce	Peak Force Fp		202			270				
Continuous Force @ Tmax (1)	Fc	N		17	73			21	1	
Continuous Force & Tillax (1)	10	lbf		38	3.9			47.	.4	
Motor Constant @ 25°C	Km	N√W		17	'.7			21.	.0	
	El	ectrical Specificat	tions (2)						
		Winding Code	A1	A2	A3	A 4	A1	A2	A3	A 4
Peak Current	lp	Arms	7.0	14.0	21.0	42.1	7.0	14.0	21.0	42.1
Continuous Current @Tmax	lc	Arms	1.4	2.7	4.0	8.1	1.2	2.5	3.7	7.4
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	35.0	8.8	3.9	1.0	44.2	11.1	4.9	1.2
Electrical Inductance ±20%	L	mH L-L	15.0	3.75	1.67	0.42	21.0	5.25	2.33	0.58
Back EMF Constant	Back EMF Constant		105	52.4	34.9	17.5	140	69.9	46.6	23.3
@ 25°C±10%	Ke	Vpeak/in/sec L-L	2.66	1.33	0.89	0.44	3.55	1.77	1.18	0.59
Force Constant @ 25°C±10%	Kf	N/Arms	128	64.2	42.8	21.4	171	85.6	57.0	28.5
Torce Constant © 25 G±10 /0	IXI	lbf/Arms	28.8	14.4	9.6	4.8	38.5	19.2	12.8	6.4
	M	echanical Specifi	cations							
Coil Assembly Mass ±15%	Mc	kg	0.91				1.10			
		lbs	2.0			2.4				
Magnetic Way Type				MW	/075			MW	100	
Magnetic Way Mass ±15%	Mw	kg/m		18	.9			27.	.3	
Way Was 113/0	IVIVV	lb/in		1.0	05			1.5	1	
	Figure	s of Merit and Add	itional	Data						
Electrical Time Constant	Te	ms	0.43					0.4	8	
Max.Theoretical Acceleration (3)	Amax	g's 101		01			11	1		
Magnetic Attraction	Fa	kN	0				0			
-		lbf 0				0				
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.35		0.29					
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			13	0	

Notes:

- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.


 Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

^{4.} Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IL18 Outline Drawings

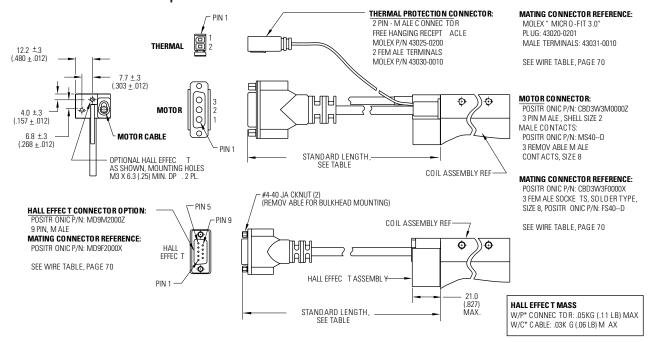
Ironless Non-Cooled Motors Series

67.30 (2.650) 25.40 (1.000) 98.50 (3.878) 25.40 (1.000) 87.30 (3.437) 25.40 (1.000) 123.50 (4.862) 30.00 (1.181) 148.50 (5.846) 34.00 (1.339)

Typ. Assy. Width Typ. Assy. Width

"T" ±.4 (.016)

25.40 (1.000)

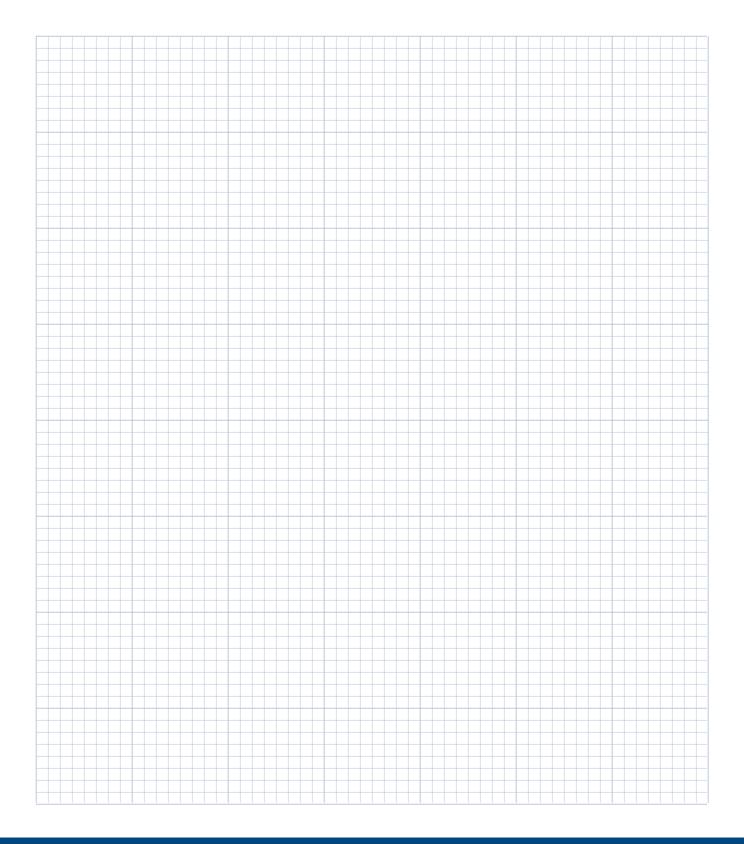

"B" ±.6 (.024)

78.50 (3.091)

Notes:

- 1. Dimensions in mm (inches)
- Tolerances unless otherwise specified:
 no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)

Termination and Hall Effect Options


Connector Option								
Connector	Length							
P1	400 (16)							
P2	200 (8)							
P3	100 (4)							
P4	1200 (48)							

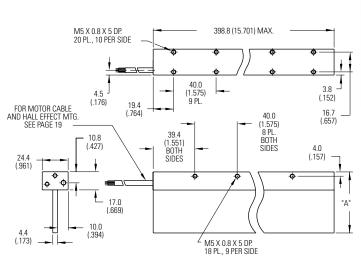
Flying Lead Option							
Leads	Length						
C1	400 (16)						
C2	200 (8)						
C3	100 (4)						
C4	1200 (48)						

Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

KOLLMORGEN KOLLMORGEN

Notes

IL24 Performance Data


Ironless Non-Cooled Motors Series

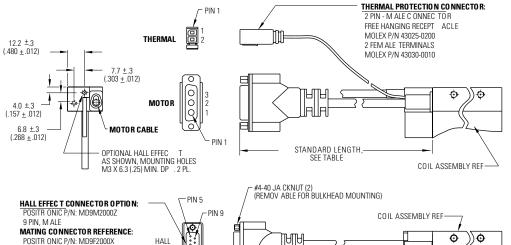
Rated Perfomance	Symbol	Units	IL24-030		IL24-050		IL24-075			IL24-100						
D. d. C	E.	N		480		800		1200					16	00		
Peak Force	Fp	lbf		108		180		270				360				
Continuous Force @ Tmax (1)	Fc	N		109			155		211				262			
Continuous Force @ Tinax (1)	FU	lbf		24.5			34.8			47	.4		58.9			
Motor Constant @ 25°C	Km	N√W		11.2			15.9			20	.6		24.4			
		E	lectri	cal S	pecifi	catio	ns (2)									
		Winding Code	A1	A2	A3	A1	A2	A3	A1	A2	A3	A 4	A1	A2	A3	A 4
Peak Current	lp	Arms	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.0	56.1	7.0	14.0	28.1	56.1
Continuous Current @Tmax	lc	Arms	1.6	3.2	6.4	1.4	2.7	5.4	1.2	2.5	4.9	9.9	1.2	2.3	4.6	9.2
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	24.3	6.1	1.5	34.3	8.6	2.1	46.6	11.7	2.9	0.73	58.9	14.7	3.7	0.92
Electrical Inductance ±20%	L	mH L-L	5.1	1.28	0.32	12.0	3.00	0.75	20.0	5.0	1.25	0.31	28.0	7.00	1.75	0.44
Back EMF Constant @ 25°C±10%	Ke	Vpeak/m/s L-L Vpeak/in/sec L-L	55.0 1.40	27.5 0.70	13.8 0.35	93.1 2.36	46.5 1.18	23.3 0.59	140. 3.55	69.9 1.77	34.9 0.89	17.5 0.44	186 4.73	93.1 2.37	46.6 1.18	23.3 0.59
Force Constant @ 25°C±10%	Kf	N/Arms Ibf/Arms	67.4 15.2	33.7 7.6	16.9	114 25.6	57.0	28.5	171 38.5	85.6 19.2	42.8 9.6	21.4	22851.3	114	57.0 12.8	28.5
		N	/lecha	anica	Spec	ifica	tions									
Cail A a a subba NA a a a 450/	N.A	kg	0.72		0.72 0.92		1.17		1.42							
Coil Assembly Mass ±15%	Mc	lbs		1.6		2.0			2.6			3.1				
				MW			MW			MW	/075		MW100			
Magnetic Way Type			030)	030L	050) (050L								
BB	N.A	kg/m	9.4	ļ	7.3	12.2	2	10.2		18	.9			27	7.3	
Magnetic Way Mass ±15%	Mw	lb/in	0.5	1	0.40	0.68	3	0.56		1.0)5			1.	51	
		Figure	es of I	Merit	and A	dditio	onal [Data								
Electrical Time Constant	Te	ms		0.21			0.35			0.4	43			0.	48	
Max.Theoretical Acceleration(3)	Amax	g's	68.0			88.7			10)5			1	15		
Magnetic Attraction	Fa	kN		0			0			()				0	
iviagnetic Attraction	Id	lbf		0			0			()			ı	0	
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.40			0.32			0.2	26			0.	22	
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130			13	30			13	30	

- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IL24 Outline Drawings

Ironless Non-Cooled Motors Series

FFFFC 1


PIN 1

Matau Oail	Coil V	Vidth	Typ. Assy. Width	Typ. Assy. Width
Motor Coil "A'		+.7 (0.027) 3 (0.012)	"B" ±.6 (.024)	"T" ±.4 (.016)
IL24-030	57.30 (2.256)	78.50 (3.091)	25.40 (1.000)
IL24-030 L	57.30 (2.256)	67.30 (2.650)	25.40 (1.000)
IL24-050	77.30 (3.043)	98.50 (3.878)	25.40 (1.000)
IL24-050 L	77.30 (3.043)	87.30 (3.437)	25.40 (1.000)
IL24-075	102.30	(4.028)	123.50 (4.862)	30.00 (1.181)
IL24-100	127.30	(5.012)	148.50 (5.846)	34.00 (1.339)

Notes:

- 1. Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

Termination and Hall Effect Options

MATING CONNECTOR REFERENCE:

MOLEX " MICR 0 -FIT 3.0" PLUG: 43020-0201 MALE TERMINALS: 43031-0010

SEE WIRE TABLE, PAGE 70

MOTOR CONNECTOR:

POSITR ONIC P/N: CBD3W3M0000Z 3 PIN M ALE, SHELL SIZE 2 MALE CONTACTS: POSITR ONIC P/N: MS40-D 3 REMOV ABLE M ALE CONTACTS, SIZE 8

MATING CONNECTOR REFERENCE:

POSITR ONIC P/N: CBD3W3F0000X 3 FEM ALE SOCKE TS, SOLDER TYPE, SIZE 8, POSITR ONIC P/N: FS40--D

SEE WIRE TABLE, PAGE 70

HALL EFFEC T MASS

W/P* C ONNEC TO R: .05KG (.11 LB) MAX W/C* C ABLE: .03K G (.06 LB) M AX

Connector Option								
Connector	Length							
P1	400 (16)							
P2	200 (8)							
P3	100 (4)							
P4	1200 (48)							

SEE WIRE TABLE, PAGE 70

Flying Lead Option								
Leads	Length							
C1	400 (16)							
C2	200 (8)							
C3	100 (4)							
C4	1200 (48)							

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

21.0 (.827) MAX.

MAGNET WAY REF.

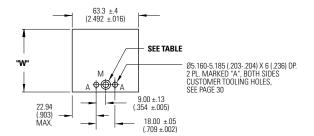
"B'

COIL ASSEMBLY

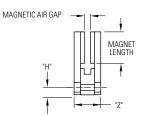
(.048 .002) CLEARANCE-SET UP DIM.

COIL TO MAGNET AIRGAP 0.74 REF TYP. FOR 030, -050 1.12 REF TYP. FOR -075 AND -100

www.kollmorgen.com 27


HALL EFFEC T ASSEMBL

STANDARD LENGTH,

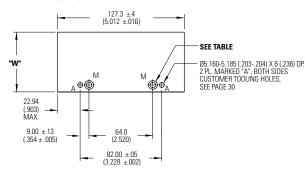

SEE TABLE

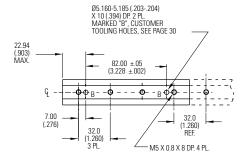
Ironless Magnet Ways

MWxxx-0064

Magnet assemblies are modular and can be installed in multiples of same or alternate lengths (see page 30). Standard assembly lengths are shown below.

Notes:

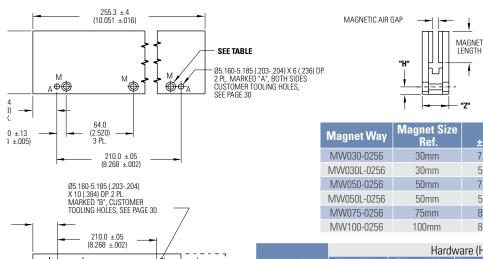

- 1. Dimensions in mm (inches)
- Tolerances unless otherwise specified:
 no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)


Magnet Way	Magnet Size Ref.	"H" ±.8 (.003)	"W" ±.4 (.016)	"Z" ±.4 (.016)
MW030-0064	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0064	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0064	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0064	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0064	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0064	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

	Hardware (Hex, Socket Head Cap)							
Magnet Way	Hole Dia. ±.13 (.005)	C'bore Dia. ±.13 (.005)	Cbore Depth ±.13 (.005)	Metric	Inch	Bottom Mount Thread Option		
MW030-0064	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW030L-0064	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.		
MW050-0064	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW050L-0064	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.		
MW075-0064	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW100-0064	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.		

Ø5.160-5.185 (203-204) X 10 (.394) DP. 2 PL. MARKED "B", CUSTOMER TOOLING HOLES, SEE PAGE 30 22.94 (.903) MAX. 18.00 ± 05 (.709 ± 002) 7.00 (.276) 32.0 (1.260) M5 X 0.8 X 8 DP. 2 PL. M5 X 0.8 X 8 DP. 2 PL.

MWxxx-0128



Magnet Way	Magnet Size Ref.	"H" ±.8 (.003)	"W" ±.4 (.016)	"Z" ±.4 (.016)
MW030-0128	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0128	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0128	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0128	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0128	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0128	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

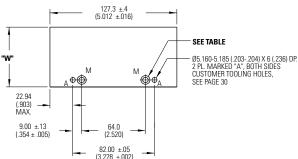
	Hardware (Hex, Socket Head Cap)							
Magnet Way	Hole Dia. ±.13 (.005)	C'bore Dia. ±.13 (.005)	Cbore Depth ±.13 (.005)	Metric	Inch	Bottom Mount Thread Option		
MW030-0128	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW030L-0128	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.		
MW050-0128	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW050L-0128	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.		
MW075-0128	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW100-0128	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.		

MWxxx-0256

Magnet assemblies are modular and can be installed in multiples of same or alternate lengths (see page 30). Standard assembly lengths are shown below.

Notes:

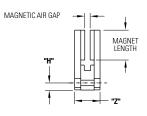
- 1. Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)


Magnet Way	Magnet Size Ref.	"H" ±.8 (.003)	"W" ±.4 (.016)	"Z" ±.4 (.016)
MW030-0256	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0256	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0256	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0256	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0256	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0256	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

	Hardware (Hex, Socket Head Cap)										
Magnet Way	Hole Dia. ±.13 (.005)	C'bore Dia. ±.13 (.005)	Cbore Depth ±.13 (.005)	Metric	Inch	Bottom Mount Thread Option					
MW030-0512	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.					
MW030L-0512	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.					
MW050-0512	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.					
MW050L-0512	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.					
MW075-0512	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.					
MW100-0512	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.					

MWxxx-0512

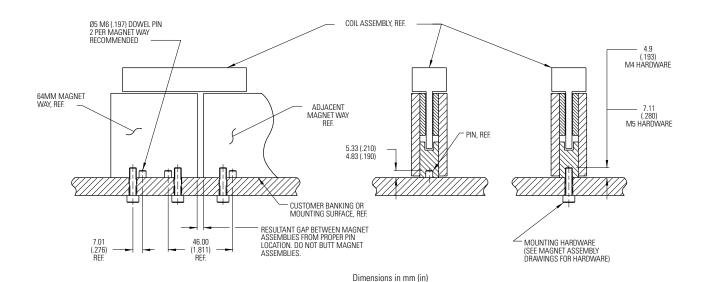
7.00 (.276) **-Φ**Φ Β −


32.0 (1.260) 7 PL.

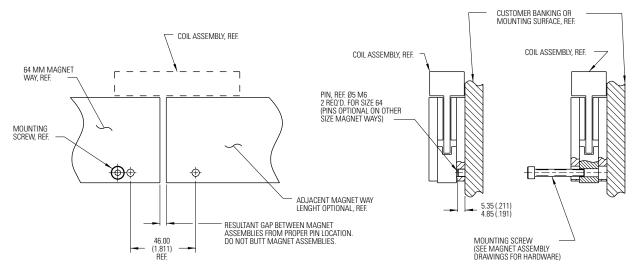
В-фф

M5 X 0.8 X 8 DP. 8 PL.

32.0 (1.260)

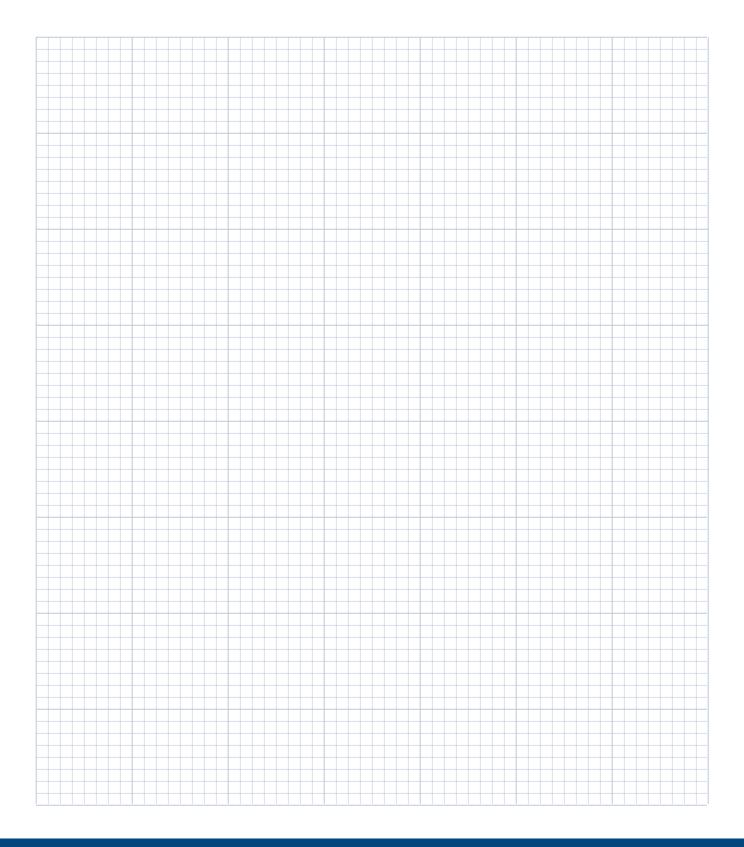

±.13 (2.520) ——	Magnet Way	Magnet Size Ref.	"H" ±.8 (.003)	"W" ±.4 (.016)	"Z" ±.4 (.016)
82.00 ±.05 (3.228 ±.002)	MW030-0512	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
(0.220 1.002)	MW030L-0512	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
Ø5.160-5.185 (.203204)	MW050-0512	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
X 10 (.394) DP. 2 PL. MARKED "B", CUSTOMER	MW050L-0512	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
TOOLING HOLES, SEE PAGE 30	MW075-0512	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
/	MW100-0512	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)
82.00 ±.05 (3.228 ±.002)		l la vale co	ora Illay Caskat	Hood Con	

			10100075-0512	/ 3111111	0.23 (.324)	100.	.20 (4.142)	30.00 (1.101)
(.903)			MW100-0512	100mm	8.23 (.324)	130.	.20 (5.126)	34.00 (1.339)
(.903) MAX.	82.00 ±.05							
	(3.228 ±.002)			Hard	ware (Hex, Socl	ket Head	Cap)	
	G	Magnet Way	Hole Dia. ±.13 (.005)	C'bore Dia. ±.13 (.005)	Cbore Depth ±.13 (.005)	Metric	Inch	Bottom Mount Thread Option
	7.00	MW030-0512	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.
	7.00 (.276) 32.0 32.0 32.0	MW030L-0512	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.
	(1.260)	MW050-0512	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.
	W3 X 0.0 X 0 B1. 41 E.	MW050L-0512	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.
		MW075-0512	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.
		MW100-0512	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.


Ironless Magnet Ways

Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm.

Bottom Mounting Installation

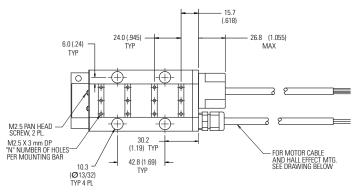


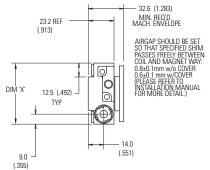
Side mounting installation

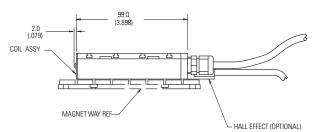
Dimensions in mm (in)

Notes

ICD05 Performance Data

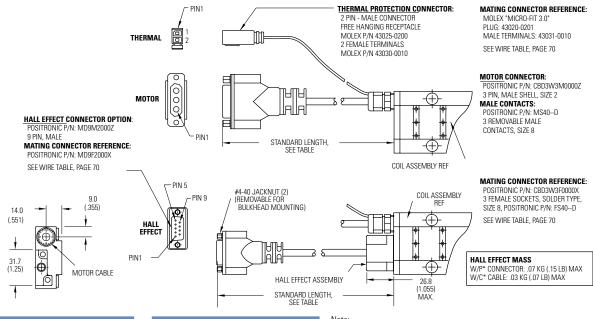

Ironcore Motors Series


Rated Perfomance	Symbol	Units	ICD0	5-030	ICD0	5-050	ICD0	5-075	ICD05-100					
Dools Force	Γ.,	N	16	165		95	44	11	58	88				
Peak Force	Fp	lbf	37.1		37.1		66	6.3	99.1		132			
Continuous Force @ Troop (1)	Г-	N	57	'.0	87	7.0	125		157					
Continuous Force @ Tmax (1)	Fc	lbf	12	.8	19	9.6	28	3.1	35.3					
Motor Constant @ 130°C	Km	N/√W	10	.3	14	1.5	18	.6	22	.0				
IVIOLOI CONSTANT @ 150 C	NIII	lbf/√W	2	.3	3	.3	4.	2	4.	9				
Motor Constant @ 25°C	Km25	N/√W	12	3	17	⁷ .2	22	.0	26	.0				
Wiotor Constant @ 25 C	KIIIZJ	lbf/√W	2.	.8	3	.9	4.	9	5.	9				
		Electrical Spe	cificati	ons (2)										
		Winding Code	A1	A5	A1	A5	A1	A5	A1	A5				
Peak Current	lp	Arms	7.9	13.7	8.5	14.7	8.5	14.7	8.5	14.7				
Continuous Current @Tmax	lc	Arms	2.1	3.7	2.0	3.4	1.9	3.3	1.8	3.1				
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	3.2	1.1	4.5	1.5	6.1	2.0	7.7	2.6				
ElectricalInductance ±20%	L	mh L-L	9.1	3.0	14.4	4.8	21.0	7.0	27.6	9.2				
Back EMFConstant	Ke	Vpeak/m/s L-L	21.8	12.6	36.3	21.0	54.3	31.4	72.4	41.8				
@25°C±10%	NG	Vpeak/in/sec L-L	0.55	0.32	0.92	0.53	1.38	0.80	1.84	1.06				
Force Constant @ 25°C±10%	Kf	N/Arms	26.7	15.4	44.5	25.7	66.5	38.4	88.7	51.2				
Toroc Constant © 25 0±1070	IXI	lbf/Arms	6.0	3.5	10.0	5.8	15.0	8.6	19.9	11.5				
		Mechanical S	Specific	ations										
0-114	N 4 -	kg	g 0.62		0.95		1.36		1.71					
Coil Assembly Mass ±15%	Mc	lbs	1.4		1.4		1.4		2.1		3.0		3.8	
Magnetic Way Type			MCD030		MCD030 MCD050		MCD075		MCD100					
Managaia Managaia 170/	Mw	kg/m	2.	2.70		3.93		48	7.0)4				
Magnetic Way Mass ±15%	IVIVV	lbs/in	0.	15	0.	22	0.3	31	0.0	39				
		Figures of Merit a	nd Addit	ional D	ata									
Electrical Time Constant	Te	ms	2.	.9	3	.2	3.	4	3.	6				
Max.Theoretical Acceleration (3)	Amax	g's	28	3.0	30	0.2	31	.9	32	.8				
NA CONTRACTOR	_	kN	0.	53	0.	89	1.0	33	1.7	78				
Magnetic Attraction	Fa	lbf	11	9	20	00	29	99	40	0				
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	3.50		2.90		2.30		2.06					
Max. Allowable Coil Temp. (4)	Tmax	°C	130		130 130		130 130		80	130				


Notes:

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

ICD05 Outline Drawings



Motor Coil Type	Coil Width "X"	# Holes "N"
ICD05-030	55.0 (2.165) ± 1.0 (.04)	3
ICD05-050	$75.0(2.953) \pm 1.0(.04)$	4
ICD05-075	100.0 (3.937) ± 1.0 (.04)	5
ICD05-100	125.0 (4.921) ± 1.0 (.04)	5

Notes:

- 1. Dimensions in mm (inches)
- Tolerances unless otherwise specified:
 no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)

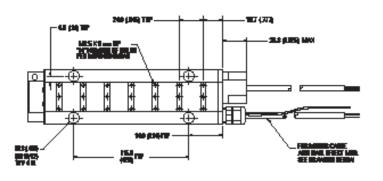
Termination and Hall Effect Options

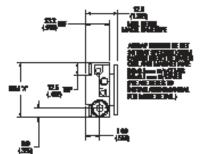
Connector Option								
Connector	Length							
P1	400 (16)							
P2	200 (8)							
P3	100 (4)							
P4	1200 (48)							

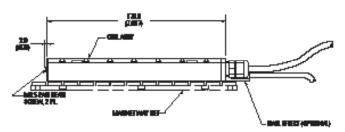
Flying Lead Option							
Length							
400 (16)							
200 (8)							
100 (4)							
1200 (48)							

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

ICD10 Performance Data

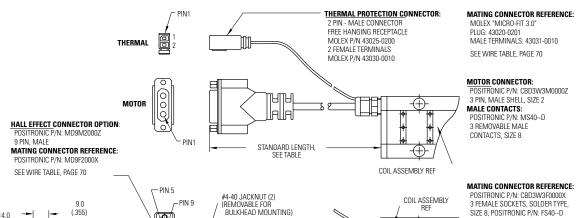

Ironcore Motors Series

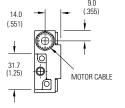

Rated Perfomance	Symbol	Units		ICD1	0-030)	ICD10-050			ICD10-075				ICD10-100												
5 4 5	_	N	330			550				824					10	99										
Peak Force	Fp	lbf		74	1.2		124				185			247												
		N		10)4			13	71			24	46		315											
Continuous Force @ Tmax (1)	Fc	lbf		23	3.4			38	3.4			55	5.3		70.8											
		N/√W		14	.6			20).5			26	6.4		31.3											
Motor Constant @ 130°C	Km	Ibf/√W		3	.3			4				5	.9			7.	.0									
Motor Constant @ 25°C	Km25	N/√W		17	'.3			24	1.3			31	.3			37	7.1									
IVIOLOI CONSTAIL @ 25 C	KIIIZƏ	lbf/√W		3	.9			5	.5			7.	.0			8	.3									
			lectr		Spec	ifica	tions	(2)																		
		Winding Code	A1		A5	A8	A1	A 4	A5	A8	A1	A 4	A5	A8	A1	A 4	A5	A8								
Peak Current	lp	Arms	7.9			27.4		15.8	13.7					27.4			13.7	27.4								
Continuous Current @Tmax	lc	Arms	1.9	3.9	3.4	6.8	1.9	3.8	3.3	6.6	1.8	3.7	3.2	6.4	1.8	3.5	3.1	6.1								
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	6.4	1.6	2.1	0.5	9.0	2.2	3.0	0.7	12.2	3.0	4.1	1.0	15.4	3.9	5.1	1.3								
Electrical Inductance ±20%	L	mh L-L	18.3	4.6	6.1	1.5	29.0	7.3	9.7	2.4	42.4	10.6	14.1	3.5	55.8	13.9	18.6	4.6								
Back EMF Constant	Ke	Vpeak/m/s L-L	43.7	21.8	25.2	12.6	72.8	36.4	42.0	21.0	109.2	54.6	63.1	31.5	145.7	72.8	84.1	42.0								
@25°C±10%	IXG	Vpeak/in/sec L-L	1.11	0.55	0.64	0.32	1.85	0.92	1.07	0.53	2.77	1.39	1.60	0.80	3.70	1.85	2.14	1.07								
Force Constant @ 25°C±10%	Kf	N/Arms												38.6												
		lbf/Arms	12.0						11.6	5.8	30.1	15.0	17.4	8.7	40.1	20.1	23.2	11.6								
			/lech			ecifi	catio						_													
Coil Assembly Mass ±15%	Mc	kg	1.1		1.9			2.7				3.4														
,		lbs	2.5		4.1			5.9				7.5														
Magnetic Way Type				MCD030				MCI	0050			MCI	D075			MCI	D100									
Magnetic Way Mass ±15%	Mw	kg/m		2.70		2.70		3.93			5.48					7.	04									
magnotto tray mass 21078	10100	lbs/in	0.15					22			0.	31			0.	39										
		Figur	es of	Meri	t and	l Add	lition	al Da	ita																	
Electrical Time Constant	Te	ms	2.9			3	.2			3	.5			3	.6											
Max.Theoretical Acceleration(3)	Amax	g's	30.7			30).7			32	2.5			33	3.7											
Magnetic Attraction	Fa	kN	1.06		1.06		1.06		1.06 1.78		2.66			3.56												
Wagnotto / tetradelon	Tu	lbf 2.38 400 598			2.38		2.38		2.38 400				80	00												
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	2.05		2.05		2.05		2.05		2.05		2.05		2.05 1.52		1.52		1.52		1.21			1.04		
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			13	30			13	30			13	30									

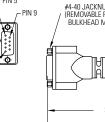

Notes

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

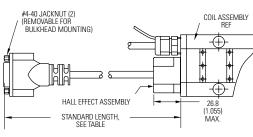
ICD10 Outline Drawings






#11-1	
# Holes	
"N"	
3	
4	
5	
5	

s in mm (inches) _ unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)


Termination and Hall Effect Options

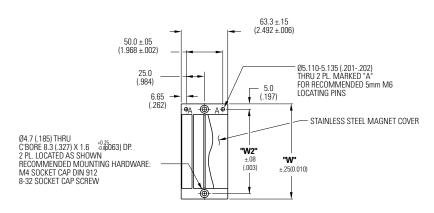
HAII

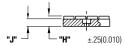
HALL EFFECT MASS W/P* CONNECTOR: .07 KG (.15 LB) MAX W/C* CABLE: .03 KG (.07 LB) MAX

SEE WIRE TABLE, PAGE 70

Connector Option Connector Length 400 (16) P2 200 (8) Р3 100 (4)

1200 (48)

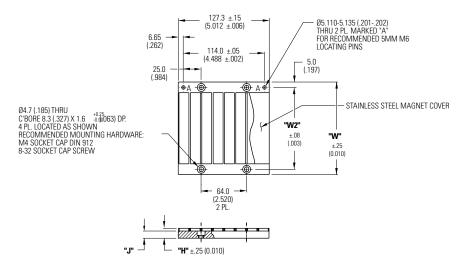

n
jth
16)
(8)
(4)
(48)


Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

ICD Magnet Ways

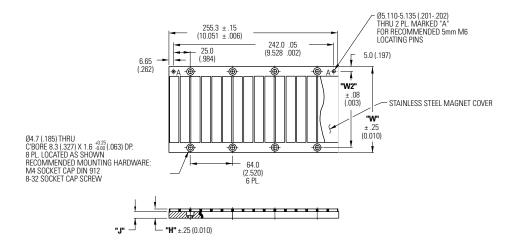
MCDxx-0064

Magnet assembiles are modular and can be installed in multiples of same or alternate lengths (see page 38). Standard assembly lengths are shown below.



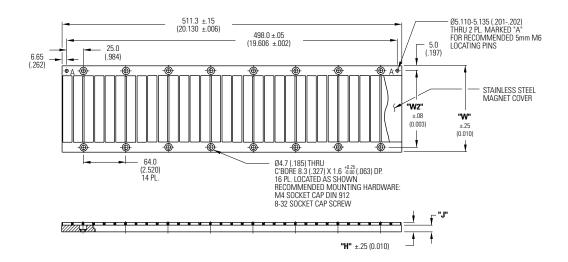
Туре	"W"	"W2"	"J"	Н"
MCD030-0064-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0064-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0064-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0064-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)

Dimensions in mm (in)


MCDxx-0128

Туре	"W"	"W2"	"J"	H"
MCD030-0128-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0128-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0128-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0128-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)

Dimensions in mm (in)

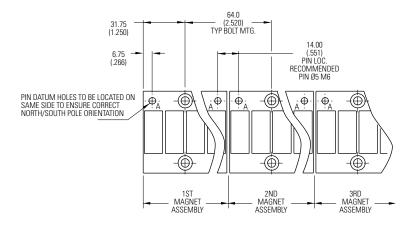

MCDxx-0256

Туре	"W"	"W2"	"J"	H"
MCD030-0256-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0256-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0256-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0256-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)

Dimensions in mm (in)

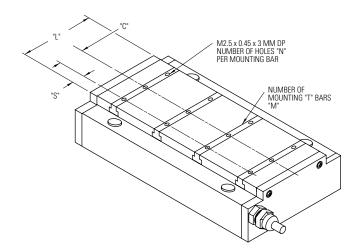
MCDxx-0512

Туре	"W"	"W2"	"J"	H"
MCD030-0512-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0512-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0512-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0512-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)


Dimensions in mm (in)

ICD Magnet Ways

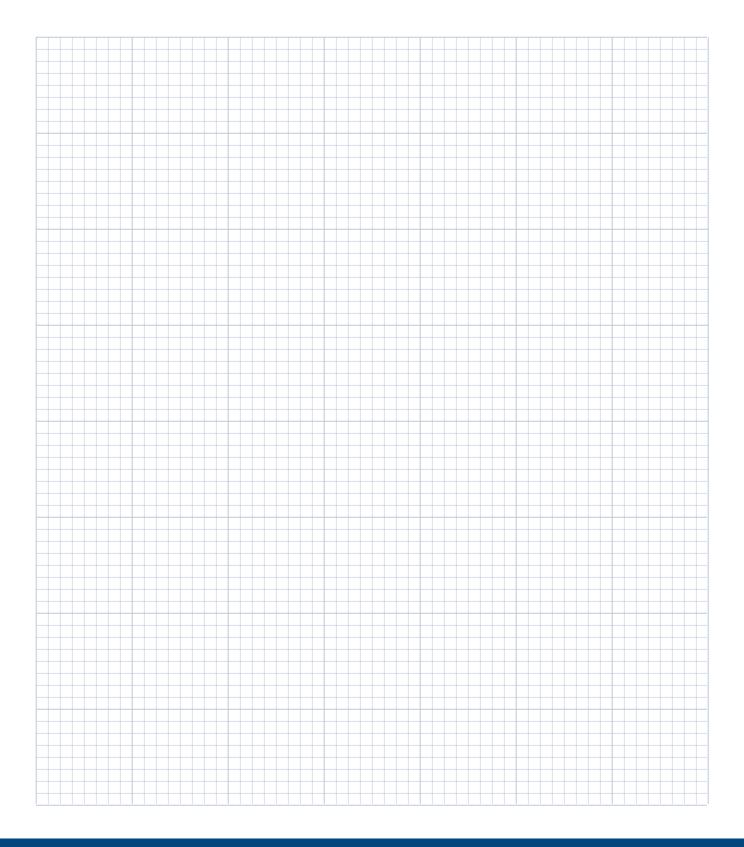
Typical Installation of Multiple Ironcore Magnet Assemblies


Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm. Multiple magnet assemblies can be installed to obtain the desired length.

Shown below is the method to mount multiple assemblies.

Dimensions in mm (in)

Typical Mounting Bar Lengths & Mounting Holes Tabulation



Dimensions in mm (in)

Motor Coil Type	Number of Holes "N"	Spacing Between Holes "C"	Mounting Bar Length "L"	" S"
ICDXX-030	3	12.0 (.472)	30 (1.18)	3.0 (.118)
ICDXX-050	4	12.0 (.472)	50 (1.97)	7.0 (2.76)
ICDXX-075	5	16.0 (.630)	75 (2.95)	5.5 (.217)
ICDXX-100	5	20.0 (.787)	100 (3.94)	10.0 (.394)

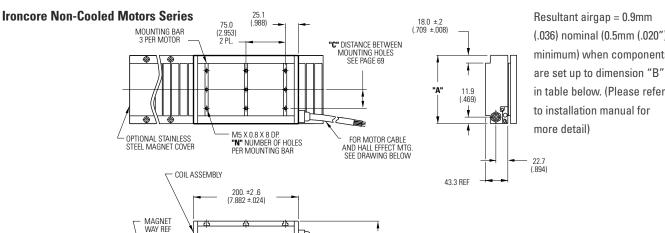
Motor Coil Type	Number of Bars "M"
ICD05-XXX	4
ICD10-XXX	7

Notes

IC11 Performance Data

Ironcore Non-Cooled Motors Series

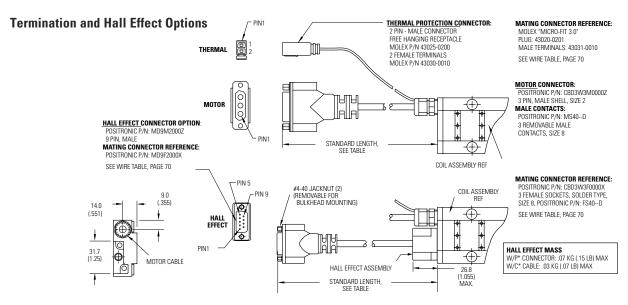
Rated Perfomance	Symbol	Units	IC11	-030	IC11	-050	IC11	-075	IC11	-100	IC11	-150	IC11	-200	
D 1.5	_	N	32	20	53	33	81	00	10	67	16	00	21	35	
Peak Force	Fp	lbf	71	.9	12	20	18	30	24	40	36	60	48	30	
	_	N	144		26	63	4	13	57	74	81	61	1197		
Continuous Force @ Tmax (1)	Fc	lbf	32	2.4	59	9.1	92	2.8	12	29	19	94	269		
Motor Constant @ 25°C	Km	N/√W	22.5		32	2.0	41	1.4	49	9.1	62	2.0	73	73.0	
		E	lectric	al Spe	cifica	tions (2)								
		Winding Code	A 1	A5	A 1	A5	A1	A5	A1	A5	A1	A5	A1	A5	
Peak Current	lp	Arms	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	
Continuous Current @Tmax	lc	Arms	4.0	6.9	4.4	7.6	4.6	8.0	4.8	8.2	4.8	8.3	5.0	8.6	
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	1.9	0.63	2.6	0.87	3.5	1.2	4.4	1.5	6.2	2.1	8.0	2.7	
Electrical Inductance ±20%	L	mh L-L	16.7	5.6	26.7	8.9	39.4	13.1	52.0	17.3	77.3	25.8	103	34.2	
Back EMF Constant @25°C±10%	Ke	Vpeak/m/s L-L Vpeak/in/sec L-L	30.9 0.78	17.8 0.45	51.4 1.30	29.7 0.75	77.1 1.96	44.5 1.13	103 2.61	59.3 1.51	154 3.92	89.0 2.26	206 5.22	119 3.02	
Force Constant @ 25°C±10%	Kf	N/Arms lbf/Arms	37.8 8.5	21.8	62.9 14.1	36.3 8.2	94.4	54.5 12.3	126 28.3	72.7 16.3	189 42.4	109 24.5	252 56.6	145 32.7	
		<u> </u>	Necha	nical S	Specifi	cation									
0.11.4		kg	2.	.5	3	.6	5	.0	6	.5	9	.4	12	2.3	
Coil Assembly Mass ±15%	Mc	lbs	5.	.5	7.	.9	11	1.0	14	1.3	20).7	27	7.1	
Magnetic Way Type			МС	030	MC	050	MC	075	MC	100	MC	150	MC	200	
BA 4:- 10/ BA 4F0/	N 4	kg/m	5.	.4	7.	.5	10	0.1	12	2.7	20).7	26	6.8	
Magnetic Way Mass ±15%	Mw	lbs/in	0.3	30	0.	42	0.	56	0.	71	1.	16	1.	50	
		Figur	es of N	lerit a	nd Add	litiona	l Data								
Electrical TimeConstant	Te	ms	8.	.8	10	1.3	11	1.3	11	.8	12	2.5	12	8	
Max.Theoretical Acceleration(3)	Amax	g's	15	.3	17	'.7	19	9.2	19	1.6	20).3	20).7	
Magnetic Attraction	Fa	kN	1.	4	2	.4	3	.7	4	.9	7.	.3	9	.9	
	T a	lbf	32	24	54	46	8	21	11	02	16	39	22	14	
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	1.6	64	0.	99	0.	67	0.	50	0.	35	0.	25	
Max. Allowable Coil Temp. (4)	Tmax	°C	13	30	13	30	13	30	13	30	13	30	13	30	


Notes:

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.


IC11 Outline Drawings

Motor Coil	Coil Width	Non-Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Mon-Coolea	without Cover	w/ Magnet Cover	"N"
IC11-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC11-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC11-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC11-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC11-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC11-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

(.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer

- Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

Connector Option						
Connector	Length					
P1	400 (16)					
P2	200 (8)					
P3	100 (4)					
P4	1200 (48)					

Flying Lead Option					
Leads	Length				
C1	400 (16)				
C2	200 (8)				
C3	100 (4)				
C4	1200 (48)				

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

IC22 Performance Data

Ironcore Non-Cooled Motors Series

Rated Perfomance	Symbol	Units		IC22-030			IC22-050			IC22-075		
Peak Force	Fp	N		624		624 10		1039			1558	
reak folce	гþ	lbf		140			234		350			
Continuous Force @ Tmax (1)	Fc	N		280			526		825			
Continuous Force & Finax (1)	10	lbf		62.9			118		185			
Motor Constant @ 25°C	Km	N/√W		31.4			44.8		58.0			
			ical Spe	cal Specifications (2)								
		Winding Code	A1	A2	A6	A 1	A2	A6	A1	A2	A6	
Peak Current	lp	Arms	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1	
Continuous Current @Tmax	lc	Arms	3.9	7.9	13.7	4.4	8.7	15.1	4.6	9.2	15.9	
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	3.9	1.0	0.33	5.3	1.3	0.44	7.1	1.8	0.59	
Electrical Inductance ±20%	L	mH L-L	33.4	8.4	2.8	53.4	13.4	4.5	78.9	19.7	6.6	
Back EMF Constant @ 25°C±10%	Ke	Vpeak/m/s L-L Vpeak/in/sec L-L	61.7 1.57	30.9 0.78	17.8 0.45	13 2.61	51.4 1.31	29.7 0.75	154 3.92	77.1 1.96	44.5 1.13	
Force Constant		N/Arms	75.6	37.8	21.8	126	63.0	36.3	189	94.4	54.5	
@ 25°C±10%	Kf	lbf/Arms	17.0	8.5	4.9	28.3	14.2	8.2	42.4	21.2	12.3	
		Mech	anical S	Specific	ations							
0:14 11.14 450/	N.4	kg		4.8			6.9		9.6			
Coil Assembly Mass ±15%	Mc	lbs		10.6		15.2			21.2			
Magnetic Way Type				MC030			MC050		MC075			
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1		
magnetic way mass 21370	10100	lb/in		0.30			0.42			0.56		
		Figures of	Merit a		tional D	ata						
Electrical Time Constant	Te	ms	8.6			10.1			11.1			
Max.Theoretical Acceleration(3)	Amax	g's	15.9			18.5			19.9			
Magnetic Attraction	Magnetic Attraction Fa			2.9			4.9			7.3		
		lbf		654			1090			1637		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.82		0.82		0.82 0.50			0.34		
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130			

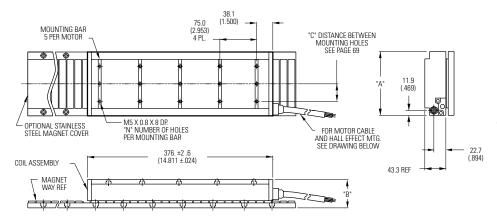
Notes

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Rated Perfomance	Symbol	Units		IC22-100			IC22-150			IC22-200	
Deal Fare	E.	N		2077			3117			4156	
Peak Force	Fp	lbf		467		467 701		934			
Continuous Force @ Tmax (1)	Fc	N		1148			1723		2393		
Continuous Force @ Tmax (1)	FC	lbf		258			387		538		
Motor Constant @ 25°C	Km	N/√W		69.5			87.8			103	
		Electr	ical Spe	ecificati	ons (2)						
		Winding Code	A1	A2	A 6	A1	A2	A6	A 1	A2	A6
Peak Current	lp	Arms	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1
Continuous Current @Tmax	lc	Arms	4.8	9.5	16.5	4.8	9.6	16.6	5.0	10.0	17.3
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	8.8	2.2	0.73	12.4	3.1	1.0	15.9	4.0	1.3
Electrical Inductance ±20%	L	mH L-L	104	26.0	8.7	155	38.7	12.9	205	51.3	17.1
Back EMF Constant	V.	Vpeak/m/s L-L	206	103	59.3	308	154	89.0	411	206	119
@ 25°C±10%	Ke	Vpeak/in/sec L-L	5.22	2.61	1.51	7.83	3.92	2.26	10.4	5.22	3.02
Force Constant	Kf	N/Arms	252	126	72.7	378	189	109	504	252	145
@ 25°C±10%	NI	lbf/Arms	56.6	28.3	16.3	84.9	42.5	24.5	113	56.6	32.7
		Mech	anical S	Specific	ations						
Coil Assembly Mass ±15%	Mc	kg		12.5			18.1			23.7	
Coll Assembly Mass ±13 /0	IVIC	lbs		27.6			39.9		52.2		
Magnetic Way Type				MC100			MC150		MC200		
Magnetic Way Mass ±15%	Mw	kg/m		12.7			20.7			26.8	
magnotio tray mass 21078	10100	lb/in		0.71			1.16			1.50	
		Figures of	Merit a	nd Addit	ional D	ata					
Electrical Time Constant	Te	ms		11.8			12.5			12.9	
Max.Theoretical Acceleration (3)	Amax	g's	20.4		20.4 21.1				21.5		
Magnetic Attraction	Fa	kN		9.8			14.6			19.7	
		lbf	2205		2205 3271				4433		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.25		0.25 0.18			0.13			
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130			130	

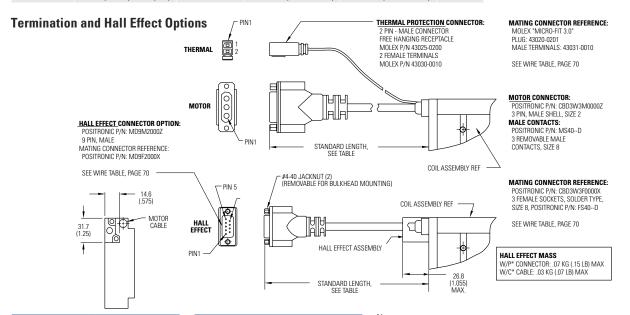

- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC22 Series Outline Drawings

Ironcore Non-Cooled Motors Series

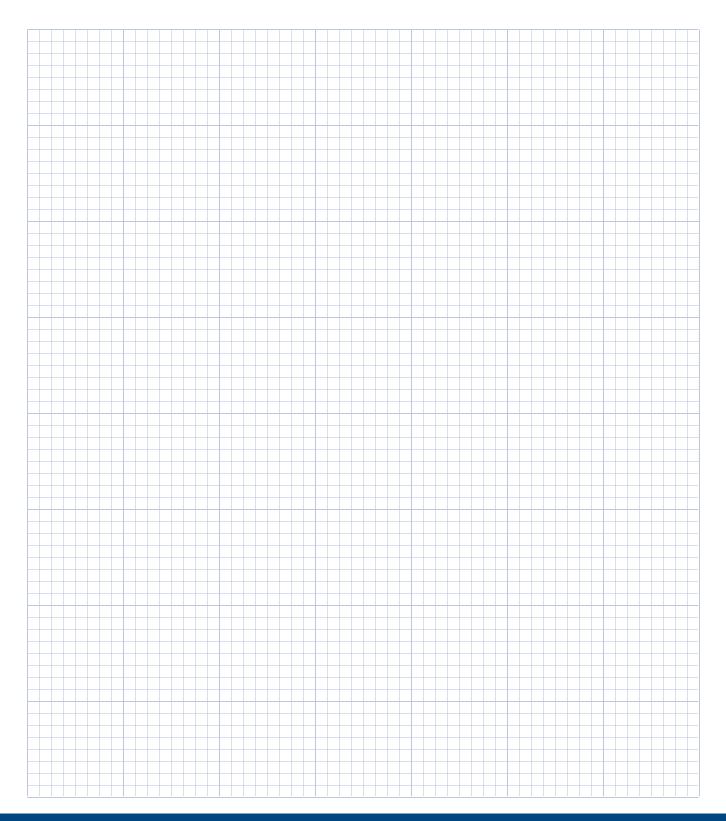


Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Motor Coil	Coil Width	Non-Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Mon-Coolea	without Cover	w/ Magnet Cover	"N"
IC22-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC22-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

Notes:

- 1. Dimensions in mm (inches)
- . Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)



Connector Option						
Connector	Length					
P1	400 (16)					
P2	200 (8)					
P3	100 (4)					
P4	1200 (48)					

Flying Le	ad Option
Leads	Length
C1	400 (16)
C2	200 (8)
C3	100 (4)
C4	1200 (48)

Note:
Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

Notes

IC33 Performance Data

Ironcore Non-Cooled Motors Series

Rated Perfomance	Symbol	Units		IC33	-030			IC33	-050			IC33	-075		
D. 1.5	_	N		94	14			15	72			23	58		
Peak Force	Fp	lbf		2	12			35	53			53	30		
0 .: 5 07 (4)	_	N		4.	31			78	39		1238				
Continuous Force @ Tmax (1)	Fc	lbf		96	6.9		177				278				
Motor Constant @ 25°C	Km	N/√W		38	3.5		55.0					71	.2		
		Ele	ctrica	l Spec	ificatio	ons (2)									
		Winding Code	A1	A3	A5	A7	A1	A3	A5	A7	A1	A3	A5	A7	
Peak Current	lp	Arms	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	
Continuous Current @Tmax	lc	Arms	4.0	11.9	6.9	20.6	4.4	13.1	7.6	22.7	4.6	13.8	8.0	23.9	
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	5.8	0.64	1.9	0.21	7.9	0.88	2.6	0.29	10.6	1.2	3.5	0.39	
Electrical Inductance ±20%	L	mh L-L	50.1	5.6	16.7	1.9	80.2	8.9	26.7	3.0	118	13.1	39.4	4.4	
Back EMF Constant	V-	Vpeak/m/s L-L	92.6	30.9	53.5	17.8	154	51.4	89.0	29.7	231	77.1	134	44.5	
@25°C±10%	Ke	Vpeak/in/sec L-L	2.35	0.78	1.36	0.45	3.92	1.31	2.26	0.75	5.88	1.96	3.39	1.13	
Force Constant @ 25°C±10%	Kf	N/Arms	113	37.8	65.5	21.8	189	62.9	109	36.3	283	94.4	164	54.5	
Torce Constant © 25 G110/0	Ki	lbf/Arms	25.5	8.5	14.7	4.9	42.4	14.1	24.5	8.2	63.7	21.2	36.8	12.3	
		Me	chani	cal Sp	ecific	ations									
Coil Assembly Mass ±15%	Mc	kg		7.	.3			10).4			14	.4		
Coll Assembly Mass ±13 /0	IVIC	lbs		16	5.1			22	2.9			31	.7		
Magnetic Way Type				MC	030			MC	050			MC	075		
Magnetic Way Mass ±15%	Mw	kg/m		5	.4			7.	.5			10).1		
Waynetic way Mass ±13/6	IVIVV	lbs/in		0.	30			0.	42			0.	56		
		Figures	of Me	rit and	Addit	ional I	Data								
Electrical Time Constant	Te	ms		8	.6			10).2			11	.2		
Max.Theoretical Acceleration(3)	Amax	g's	15.7				18	3.4			19	1.9			
N. 4 + i - N. + + + i	Г-	kN	4.4					7.	.4			11	.0		
Magnetic Attraction	Fa	lbf	991					1652				24	80		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.55				0.33				0.22				
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			13	30		130				

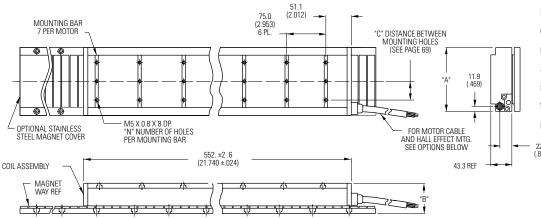
Notes

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Rated Perfomance	Symbol	Units	IC33-100					IC33	-150			IC33	IC33-200				
0.45	_	N		31	44			47	16			62	91				
Peak Force	Fp	lbf		70)7			10	60		1414						
0 1 5 07 (1)	_	N		17	22			25	83		3590						
Continuous Force @ Tmax (1)	Fc	lbf		38	37		581				807						
Motor Constant @ 25°C	Km	N/√W		85	5.1		108					12	27				
		Ele	ctrica	l Spec	ificati	ons (2)											
		Winding Code	A1	A3	A5	A7	A1	A3	A5	A7	A1	A3	A5	A7			
Peak Current	lp	Arms	11.1 33.1 19.1 57.3			11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3				
Continuous Current @Tmax	lc	Arms	4.8 14.3 8.2 24.7			4.8	14.4	8.3	24.9	5.0	14.9	8.6	25.9				
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	13.2	1.5	4.4	0.49	18.5	2.1	6.2	0.69	23.9	2.7	8.0	0.89			
Electrical Inductance ±20%	L	mh L-L	156 17.3 52.0 5.8				232	25.8	77.3	8.6	308	34.2	103	11.4			
Back EMF Constant	V-	Vpeak/m/s L-L	308	103	178	59.3	463	154	267	89.0	617	206	356	119			
@25°C±10%	Ke	Vpeak/in/sec L-L	7.83	2.61	4.52	1.51	11.7	3.92	6.78	2.26	15.7	5.22	9.05	3.02			
Force Constant @ 25°C±10%	Kf	N/Arms	378	126	218	72.7	567	189	327	109	756	252	436	145			
Torce Constant @ 25 Giro /6	KI	lbf/Arms	84.9	28.3	49.0	16.3	127	42.5	73.5	24.5	170	56.6	98.1	32.7			
		Me	echani	cal Sp	ecific	ations											
Coil Assembly Mass ±15%	Mc	kg		18	.9			27	.3			35	5.7				
Coll Assembly Mass ±13 /0	IVIC	lbs		41	.7		60.2				78.7						
Magnetic Way Type				MC	100			MC	150			MC	200				
Manuatia Man Mana 1450/	Mw	kg/m		12	2.7			20	.7			26	8.8				
Magnetic Way Mass ±15%	IVIVV	lbs/in		0.	71			1.1	16			1.	50				
		Figures	of Me	rit and	d Addit	tional	Data										
Electrical Time Constant	Te	ms		11	.8			12	.5			12	9				
Max.Theoretical Acceleration(3)	Amax	g's	20.2					21	.0			21	.4				
Magnetic Attraction	Fa	kN		14	.7			22	.1			29	0.4				
Magnetic Attraction	ra	lbf		33	05		4957					66	09				
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.	17		0.12				0.084						
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			13	10		130						

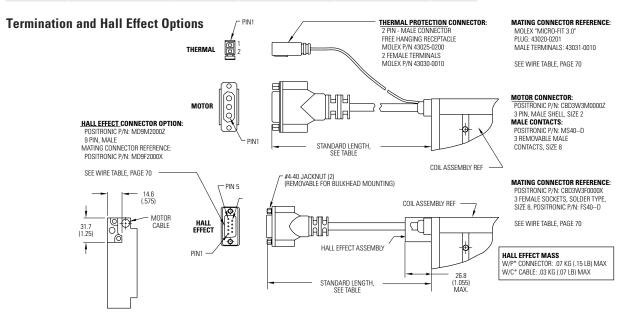

- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
 Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

^{4.} Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC33 Series Outline Drawings

Ironcore Non-Cooled Motors Series

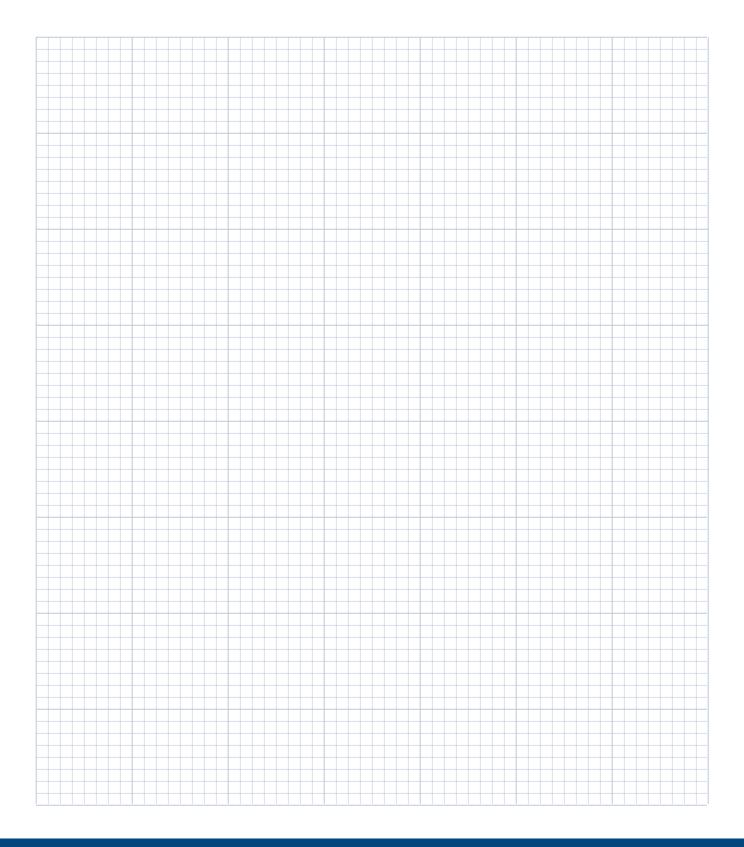


Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Motor Coil	Coil Width	Non-Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Mon-Coolea	without Cover	w/ Magnet Cover	"N"
IC33-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC33-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

Notes:

- . Dimensions in mm (inches)
- . Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)



Connect	tor Option
Connector	Length
P1	400 (16)
P2	200 (8)
P3	100 (4)
P4	1200 (48)

Flying Le	ad Option
Leads	Length
C1	400 (16)
C2	200 (8)
C3	100 (4)
C4	1200 (48)

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

Notes

IC44 Performance Data

Ironcore Non-Cooled Motors Series

Rated Perfomance	Symbol	Units		IC44		IC44	-050			IC44	-075				
	_	N		12	:59			20	96			31	44		
Peak Force	Fp	lbf		28	83			4	71		707				
0 1 5 07 (1)	_	N		56	60			10	53		1651				
Continuous Force @ Tmax (1)	Fc	lbf		12	26		237				371				
Motor Constant @ 25°C	Km	N/√W		44	1.3			63.3				82.4			
		Ele	ctrica	Spec	ificatio	ons (2)									
		Winding Code	A1	A2	A 3	A7	A1	A2	A 3	A7	A1	A2	A 3	A7	
Peak Current	lp	Arms	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	
Continuous Current @Tmax	lc	Arms	3.9	7.9	15.8	27.3	4.4	8.7	17.4	30.2	4.6	9.2	18.3	31.8	
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	7.8	2.0	0.49	0.16	10.6	2.7	0.66	0.22	14.1	3.5	0.88	0.29	
Electrical Inductance ±20%	L	mh L-L	66.8	16.7	4.2	1.4	107	26.7	6.7	2.2	158	39.4	9.9	3.3	
Back EMF Constant	I/ a	Vpeak/m/s L-L	123	61.7	30.9	17.8	206	103	51.4	29.7	308	154	77.1	44.5	
@25°C±10%	Ke	Vpeak/in/sec L-L	3.14	1.57	0.78	0.45	5.22	2.61	1.31	0.75	7.83	3.92	1.96	1.13	
Force Constant @ 25°C+10%	Kf	N/Arms	151	75.6	37.8	21.8	252	126	63.0	36.3	378	189	94.4	54.5	
1010C 00113tant @ 20 0±10/0	IXI	lbf/Arms	34.0	17.0	8.5	4.9	56.6	28.3	14.2	8.2	84.9	42.5	21.2	12.3	
		Me	chani	cal Sp	ecifica	ations									
Coil Assembly Mass ±15%	Mc	kg		9	.6			13	1.9			19	9.2		
Coll Assembly Mass ±15 /0	IVIC	lbs		21	1.2		30.6				42.3				
Magnetic Way Type				MC	030			MC	050			MC	075		
Magnetic Way Mass ±15%	Mw	kg/m		5	.4			7	.5			10).1		
Way Was 113 /0	IVIVV	lbs/in		0.	30			0.	42			0.	56		
		Figures	of Me	rit and	l Addit	ional I	Data								
Electrical Time Constant	Te	ms		8	.6			10).1			11	.2		
Max.Theoretical Acceleration(3)	Amax	g's	15.9				18	3.3			19	1.9			
Manuatia Attuatian	Г-	kN	5.9					9	.8			14	1.7		
Magnetic Attraction	Fa	lbf	1322					22	03			33	05		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.	41		0.25				0.17				
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			13	30		130				

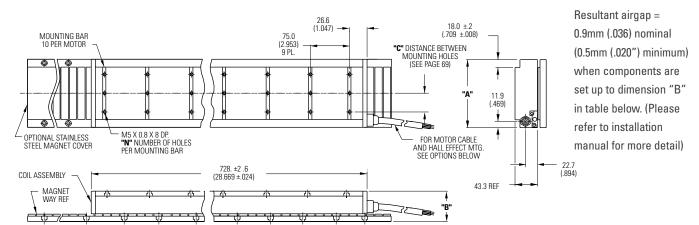
Notes

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

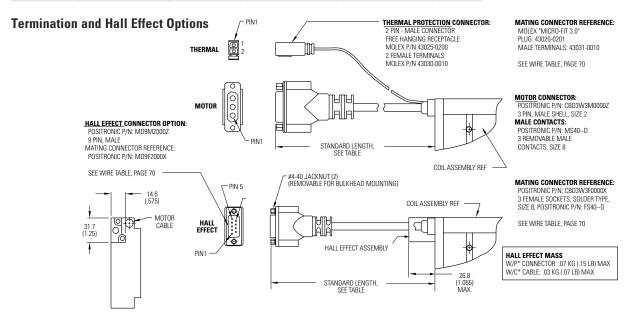
Rated Perfomance	Symbol	Units	IC44-100					IC44	-150			IC4	4-200		
D 1.5	_	N		41	92			62	189			8:	388		
Peak Force	Fp	lbf		9.	42			14	14		1885				
	_	N		22	96			34	45		4786				
Continuous Force @ Tmax (1)	Fc	lbf		5	16			77	74		1076				
Motor Constant @ 25°C	Km	N/√W		98	3.3			12	24		146				
		Elec	ctrical	Speci	ficatio	ns (2)									
		Winding Code	A1	A2	A3	A7	A1	A2	A3	A7	A1	A2	A3	A7	
Peak Current	lp	Arms	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	
Continuous Current @Tmax	lc	Arms	4.8	9.5	19.0	33.0	4.8	9.6	19.2	33.2	5.0	10.0	20.0	34.6	
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	17.6	4.4	1.1	0.37	24.7	6.2	1.5	0.51	31.8	8.0	2.0	0.66	
Electrical Inductance ±20%	L	mh L-L	208	52.1	13.0	4.3	309	77.4	19.3	6.4	410	103	25.7	8.6	
Back EMF Constant	Ke	Vpeak/m/s L-L	411	206	103	59.3	617	308	154	89.0	823	411	206	119	
@25°C±10%	Ke	Vpeak/in/sec L-L	10.4	5.22	2.61	1.51	15.7	7.83	3.92	2.26	20.9	10.4	5.22	3.02	
Force Constant @ 25°C±10%	Kf	N/Arms	504	252	126	72.7	755	378	189	109	1008	504	252	145	
		lbf/Arms	113	56.6	28.3	16.3	170	84.9	42.5	24.5	227	113	56.6	32.7	
		Me	chanic	cal Sp	ecifica	tions									
Coil Assembly Mass ±15%	Mc	kg	25.0			36.2				47.4					
CONTROCHISTY WINDO 21070	1710	lbs		5!	5.1		79.8				104				
Magnetic Way Type				MC	100			MC	150			M	C200		
Magnetic Way Mass ±15%	Mw	kg/m		12	2.7			20).7			2	6.8		
Waynetic way Wass ±13 /0	IVIVV	lbs/in		0.	71			1.	16			1	.50		
		Figures	of Me	rit and	Additi	onal D	ata								
Electrical Time Constant	Te	ms		11	.8			12	2.5			1:	2.9		
Max.Theoretical Acceleration(3)	Amax	g's	20.4					21	1.1			2	1.5		
Magnatia Attraction	Ę _o	kN	19.6					29	9.4			3	9.4		
Magnetic Attraction	Fa	lbf	4406					66	09			8	358		
Thermal Resistance (coils to external structure)	Rth	°C/Watt	0.13				0.088			0.063					
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			13	30		130				


- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
 Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

^{4.} Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

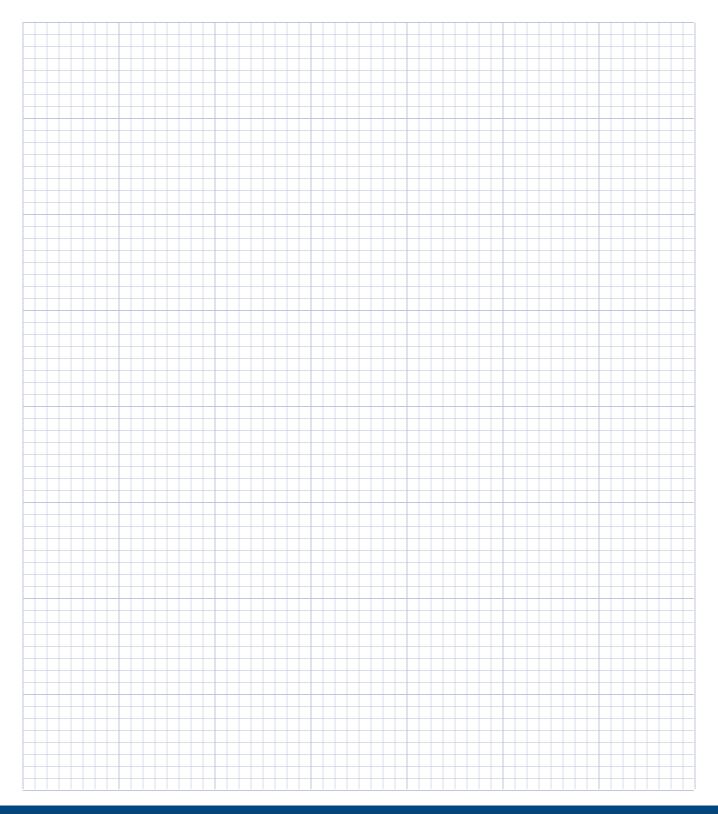
IC44 Series Outline Drawings


Ironcore Non-Cooled Motors Series

Motor Coil	Coil Width	Non-Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Mon-Coolea	without Cover	w/ Magnet Cover	"N"
IC44-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC44-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC44-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC44-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC44-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC44-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

Notes:

- . Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)



Connect	tor Option
Connector	Length
P1	400 (16)
P2	200 (8)
P3	100 (4)
P4	1200 (48)

Flying Le	ead Option
Leads	Length
C1	400 (16)
C2	200 (8)
C3	100 (4)
C4	1200 (48)

Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

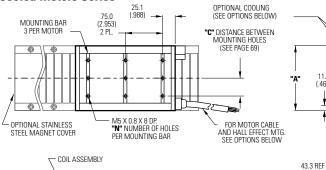
Notes

IC11 Performance Data

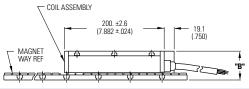
Ironcore Water-Cooled Motors Series

Rated Perfomance	Symbol	Units	IC11	-030	IC11	-050	IC11	-075	IC11	-100	IC11	-150	IC11-200	
D 15	_	N	31	15	52	25	79	98	10	51	15	76	21	02
Peak Force	Fp	lbf	70	.8	11	8	179		236		354		47	73
0 .: 5 .07 .40	F	N	25	54	43	432		649		64	1285		17	12
Continuous Force @ Tmax (1)	Fc	lbf	57	7.1	97.1		146		19	94	289		38	85
Motor Constant @ 25°C	Km	N/√W	19	.3	28.6		37	7.3	45	5.0	55	5.7	65	5.7
			lectric	al Spe	ecifica	tions (2)							
		Winding Code	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5
Peak Current	lp	Arms	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9
Continuous Current @Tmax	lc	Arms	9.7	16.9	9.9	17.2	9.9	17.1	9.9	17.2	9.8	17.0	9.8	17.0
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	1.6	0.53	2.1	0.70	2.8	0.93	3.5	1.2	5.0	1.7	6.4	2.1
Electrical Inductance ±20%	L	mh L-L	10.3	3.4	16.5	5.5	24.4	8.1	32.1	10.7	47.7	15.9	63.3	21.1
Back EMF Constant @25°C±10%	Ke	Vpeak/m/s L-L Vpeak/in/sec L-L	24.8 0.63	14.3 0.36	41.4 1.05	23.9 0.61	62.2 1.58	35.9 0.91	82.9 2.11	47.8 1.22	124 3.16	71.7 1.82	166 4.21	95.7 2.43
Force Constant @ 25°C±10%	Kf	N/Arms	30.4	17.6	50.7	29.3	76.2	44.0	102	58.6	152	87.9	203	117
		lbf/Arms	6.8	3.9	11.4	6.6	17.1	9.9	22.8	13.2	34.2	19.8	45.7	26.4
					Specifi					_		_		
Coil Assembly Mass ±15%	Mc	kg	2.		3.6		5.0		6.5		9.4			2.3
		lbs	5.	.5	7.	9	11.0		14.3		20.7		27.1	
Magnetic Way Type			MC	030	MC	050	MC	075	MC	100	MC	150	MC	200
Magnetic Way Mass ±15%	Mw	kg/m	5.	.4	7.	5	10).1	12	2.7	20).7	26	8.8
Waynetic way wass ±13/0	IVIVV	lbs/in	0.3	30	0.4	42	0.	56	0.	71	1.	16	1.	50
		Figur	es of N	lerit a	nd Add	litiona	l Data							
Electrical TimeConstant	Te	ms	6	.4	7.	9	8	.7	9	.2	9	.5	9	.9
Max.Theoretical Acceleration(3)	Amax	g's	15	.3	17	'.7	19	3.2	19	0.6	20).3	20	0.7
Magnetic Attraction	Fa	kN	1.4		2.	.4	3	.7	4.9		7.3		9	.9
Maynetic Attraction	Id	lbf	32	324		16	8	21	1102		16	39	22	14
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.3	33	0.:	24	0.18		0.15		0.10		0.081	
Max. Allowable Coil Temp. (4)	Tmax	°C	13	30	13	30	13	30	13	30	130		130	

Notes

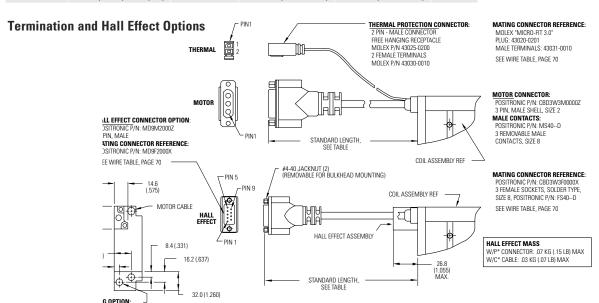

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.


^{4.} Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC11 Outline Drawings

Ironcore Water-Cooled Motors Series


Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Motor Coil	Coil Width	Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Coolea	without Cover	w/ Magnet Cover	"N"
IC11-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC11-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC11-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC11-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC11-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC11-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

11.9 (.469)

- Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

Connector Option						
Connector	Length					
P1	400 (16)					
P2	200 (8)					
P3	100 (4)					
P4	1200 (48)					

Flying Le	ead Option
Leads	Length
C1	400 (16)
C2	200 (8)
C3	100 (4)
C4	1200 (48)

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

IC22 Performance Data

Ironcore Water-Cooled Motors Series

Rated Perfomance	Symbol	Units		IC22-030			IC22-050			IC22-075	
Peak Force	Fn	N		630		1051			1576		
Реак гогсе	Fp	lbf		142		236		354			
Continuous Force @ Tmax (1)	Fc	N		519			864			1284	
Continuous Force & Finax (1)	16	lbf		117			194			287	
Motor Constant @ 25°C	Km	N/√W		28.3			40.5			52.2	
			ical Spe	cificati	ons (2)						
		Winding Code	A1	A2	A6	A1	A2	A 6	A1	A2	A6
Peak Current	lp	Arms	13.8	27.6	47.8	13.8	27.6	47.8	13.8	27.6	47.8
Continuous Current @Tmax	lc	Arms	9.9	19.8	34.3	9.9	19.8	34.3	9.8	19.6	34.0
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	3.1	0.78	0.26	4.2	1.1	0.35	5.7	1.4	0.48
Electrical Inductance ±20%	L	mH L-L	20.6	5.2	1.7	33.0	8.3	2.8	48.6	12.2	4.1
Back EMF Constant @ 25°C±10%	Ke	Vpeak/m/s L-L Vpeak/in/sec L-L	49.7 1.26	24.9 0.63	14.4 0.36	82.9 2.11	41.4 1.05	23.9 0.61	124 3.16	62.2 1.58	35.9 0.91
Force Constant		N/Arms	60.9	30.5	17.6	102	50.8	29.3	152	76.2	44.0
@ 25°C±10%	Kf	lbf/Arms	13.7	6.8	4.0	22.8	11.4	6.6	34.2	17.1	9.9
		Mech	anical Specifications								
Coil Assembly Mass (1E0)	Mc	kg		4.8			6.9			9.6	
Coil Assembly Mass ±15%	IVIC	lbs		10.6		15.2			21.2		
Magnetic Way Type				MC030			MC050			MC075	
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1	
magnetic way mass 21376	10100	lb/in		0.30			0.42			0.56	
		Figures of	Merit a	nd Addit	ional Da	ata					
Electrical Time Constant	Te	ms	6.6			7.9			8.5		
Max.Theoretical Acceleration (3)	Amax	g's	15.9		15.9 18.5			19.9			
Magnetic Attraction	Fa	kN	2.9		4.9				7.3		
		lbf	654		654 1090				1637		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.16 0.12		0.091					
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130		

Notes

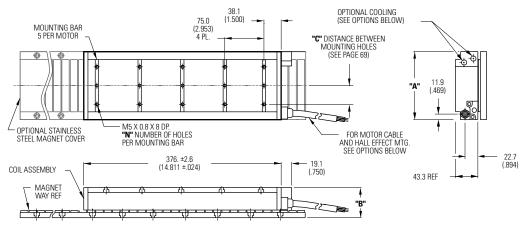
- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Rated Perfomance	Symbol	Units		IC22-100			IC22-150		IC22-200		
Deal Fare	E.	N		2106		3152			4204		
Peak Force	Fp	lbf		473		709		945			
Continuous Force @ Tmax (1)	Fc	N		1715			2566		3458		
Continuous Force @ Imax (1)	ΓÜ	lbf		386			577			777	
Motor Constant @ 25°C	Km	N/√W		62.5			79.3			93.3	
		Electr	ical Spe	ecificati	ons (2)						
		Winding Code	A1	A2	A6	A 1	A2	A 6	A1	A2	A 6
Peak Current	lp	Arms	13.8	27.6	47.8	13.8	27.6	47.8	13.8	27.6	47.8
Continuous Current @Tmax	lc	Arms	9.8	19.6	34.0	9.8	19.7	34.1	9.9	19.8	34.3
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	7.1	1.8	0.59	9.9	2.5	0.83	12.7	3.2	1.1
Electrical Inductance ±20%	L	mH L-L	64.1	16.0	5.3	95.4	23.9	8.0	127	31.6	10.5
Back EMF Constant	Ke	Vpeak/m/s L-L	166	83.1	48.0	249	124	71.8	332	166	95.7
@ 25°C±10%	Ke	Vpeak/in/sec L-L	4.22	2.11	1.22	6.32	3.16	1.82	8.42	4.21	2.43
Force Constant	Kf	N/Arms	203	102	58.7	305	152	87.9	406	203	117
@ 25°C±10%	NI	lbf/Arms	45.7	22.9	13.2	68.5	34.2	19.8	91.3	45.7	26.4
		Mech	anical S	Specific	ations						
Coil Assembly Mass ±15%	Mc	kg		12.5			18.1			23.7	
GOTT (GOOTHERY WIGGO ±10 /0	1010	lbs		27.6		39.9		52.2			
Magnetic Way Type				MC100			MC150		MC200		
Magnetic Way Mass ±15%	Mw	kg/m		12.7		20.7				26.8	
		lb/in		0.71			1.16			1.50	
		Figures of	Merit a		tional D	ata					
Electrical Time Constant	Te	ms	9.0			9.6			10.0		
Max.Theoretical Acceleration (3)	Amax	g's	20.4		21.1				21.5		
Magnetic Attraction	Fa	kN			14.6				19.7		
		lbf	2205			3271			4433		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.073		0.073 0.052		0.040				
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130		

Notes:

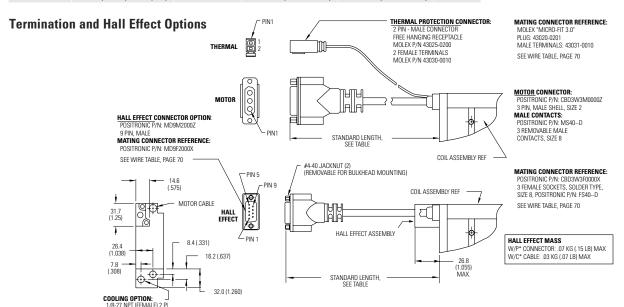

- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
 Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

^{4.} Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC22 Outline Drawings

Ironcore Water-Cooled Motors Series

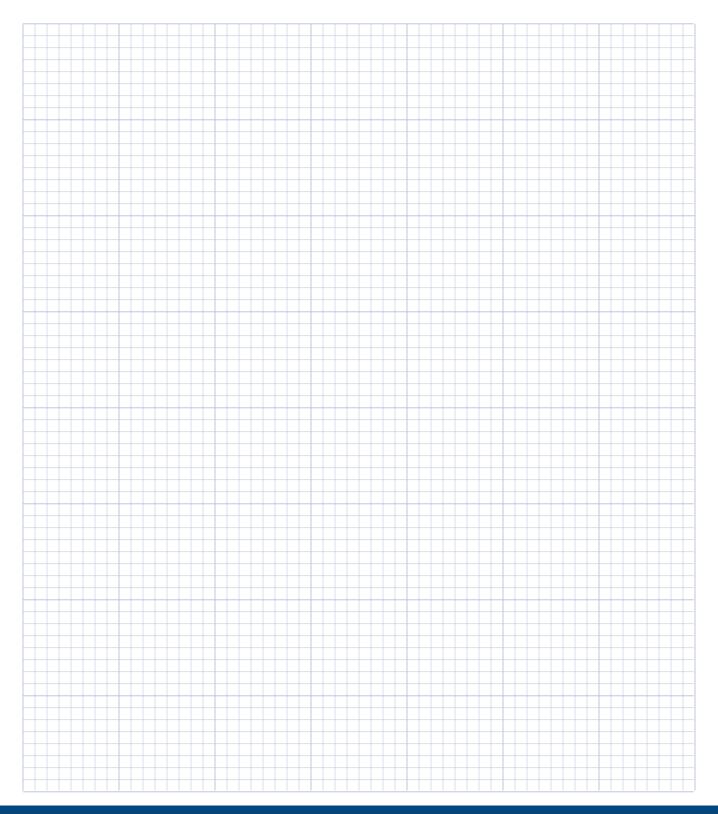


Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Motor Coil	Coil Width	Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Coolea	without Cover	w/ Magnet Cover	"N"
IC22-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC22-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

Notes:

- Dimensions in mm (inches)
- Tolerances unless otherwise specified:
 no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)



Connector Option						
Length						
400 (16)						
200 (8)						
100 (4)						
1200 (48)						

Flying Lead Option						
Leads	Length					
C1	400 (16)					
C2	200 (8)					
C3	100 (4)					
C4	1200 (48)					

Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

Notes

IC33 Performance Data

Ironcore Water-Cooled Motors Series

Rated Perfomance	Symbol	Units		IC33-030			IC33-050			IC33-075	
Peak Force	Fp	N		945			1575			2365	
reak folce	гþ	lbf		212		354		532			
Continuous Force @ Tmax (1)	Fc	N		769			1283			1926	
Continuous Force & Finax (1)	10	lbf		173			288		433		
Motor Constant @ 25°C	Km	N/√W		34.5			49.2			64.2	
			ical Spe	ecificati	ons (2)						
		Winding Code	A 1	A 3	A5	A 1	A 3	A5	A 1	A3	A5
Peak Current	lp	Arms	13.8	41.4	23.9	13.8	41.4	23.9	13.8	41.4	23.9
Continuous Current @Tmax	lc	Arms	9.8	29.5	17.0	9.8	29.4	17.0	9.8	29.4	17.0
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	4.7	0.52	1.6	6.4	0.71	2.1	8.5	0.94	2.8
Electrical Inductance ±20%	L	mH L-L	31.0	3.4	10.3	49.5	5.5	16.5	73.1	8.1	24.4
Back EMF Constant @ 25°C±10%	Ke	Vpeak/m/s L-L Vpeak/in/sec L-L	74.5 1.89	24.8 0.63	43.0 1.09	124 3.16	41.4 1.05	71.7 1.82	187 4.74	62.2 1.58	108 2.74
Force Constant		N/Arms	91.3	30.4	52.7	152	50.7	87.9	229	76.2	132
@ 25°C±10%	Kf	lbf/Arms	20.5	6.8	11.9	34.2	11.4	19.8	51.4	17.1	29.7
		Mech	anical S	Specific	ations						
0 114 11 14 450/	N.4	kg		7.3			10.4			14.4	
Coil Assembly Mass ±15%	Mc	lbs		16.1		22.9		31.7			
Magnetic Way Type				MC030			MC050		MC075		
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1	
Maynetic Way Mass ±13/0	IVIVV	lb/in		0.30			0.42			0.56	
		Figures of	Merit a	nd Addit	tional D	ata					
Electrical Time Constant	Te	ms	6.6			7.7			8.6		
Max.Theoretical Acceleration (3)	Amax	g's	15.7		15.7 18.4				19.9		
Magnetic Attraction	Fa	kN	4.4		7.4				11.0		
		lbf	991			1652			2480		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.11		0.11 0.081		0.061				
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130		

Notes

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

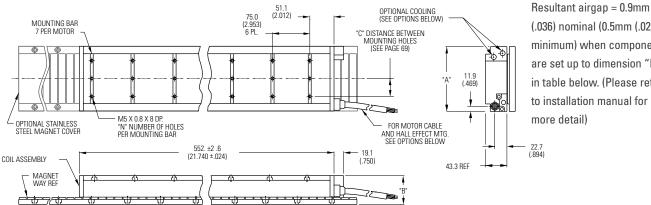
4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

GO KOLLMORGEN

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Rated Perfomance	Symbol	Units		IC33-100			IC33-150	_		IC33-200	_
D. J. 5	-	N		3152		4724		6306			
Peak Force	Fp	lbf		709		1063			1418		
O .: F @T (4)	-	N		2593			3849		5135		
Continuous Force @ Tmax (1)	Fc	lbf		583			865			1154	
Motor Constant @ 25°C	Km	N/√W		76.5			96.9			114	
Max. Cont. Power Dissipation	Pc	W		2188			3000			3889	
		Electr	ical Spe	cificati	ons (2)						
		Winding Code	A 1	А3	A5	A 1	А3	A 5	A 1	А3	A5
Peak Current	lp	Arms	13.8	41.4	23.9	13.8	41.4	23.9	13.8	41.4	23.9
Continuous Current @Tmax	lc	Arms	9.9	29.7	17.1	9.8	29.3	16.9	9.8	29.5	17.0
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	10.6	1.2	3.5	14.9	1.7	5.0	19.1	2.1	6.4
Electrical Inductance ±20%	L	mH L-L	96.2	10.7	32.1	143	15.9	47.7	190	21.1	63.3
Back EMF Constant	Ke	Vpeak/m/s L-L	249	82.9	144	373	124	215	497	166	287
@ 25°C±10%	Ke	Vpeak/in/sec L-L	6.32	2.11	3.65	9.47	3.16	5.47	12.6	4.21	7.30
Force Constant	Kf	N/Arms	304	102	176	457	152	264	609	203	352
@ 25°C±10%	NI	lbf/Arms	68.5	22.8	39.5	103	34.2	59.3	137	45.7	79.1
		Mech	anical S	Specific	ations						
Coil Assembly Mass ±15%	Mc	kg		18.9			27.3			35.7	
Coll Assembly Mass ±13 /0	IVIC	lbs		41.7			60.2			78.7	
Magnetic Way Type				MC100			MC150		MC200		
Magnetic Way Mass ±15%	Mw	kg/m		12.7			20.7			26.8	
Magnette Way Mass 21370	10100	lb/in		0.71			1.16			1.50	
		Figures of	Merit a	nd Addit	ional D	ata					
Electrical Time Constant	Te	ms	9.1			9.6			9.9		
Max.Theoretical Acceleration (3)	Amax	g's	20.2		20.2 21.0			21.4			
Magnetic Attraction	Fa	kN	14.7		14.7 22.1				29.4		
	, u	lbf	3305		3305 4957				6609		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.048		0.048 0.035		0.027				
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130		

Notes:

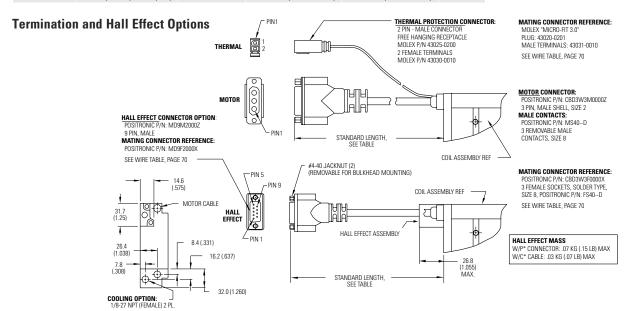

- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
 Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

^{4.} Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC33 Outline Drawings

Ironcore Water-Cooled Motors Series

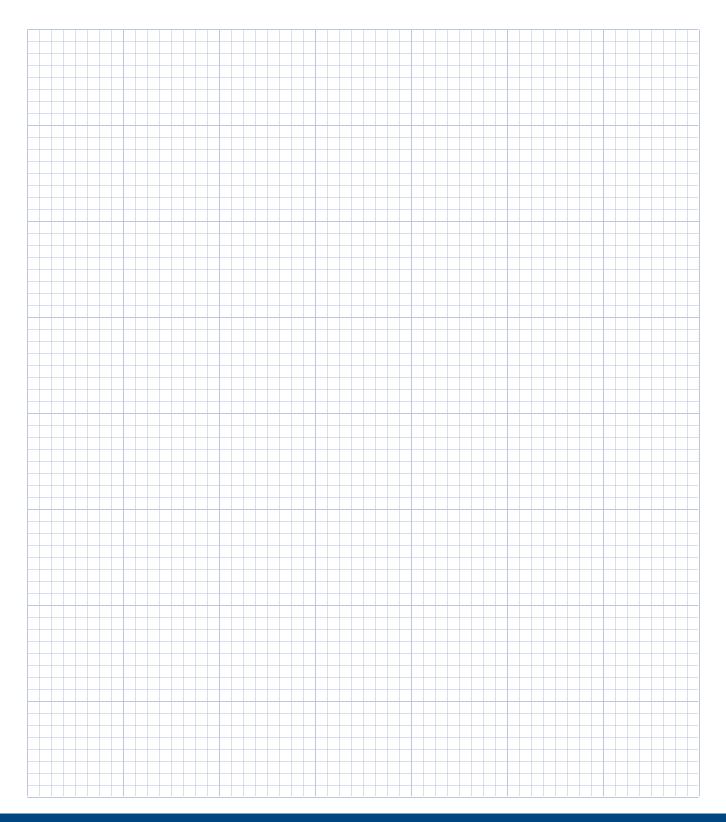


Motor Coil	Coil Width	Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Coolea	without Cover	w/ Magnet Cover	"N"
IC33-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC33-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

(.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Notes:

- Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ± 0.05 (0.002)



Connector Option						
Length						
400 (16)						
200 (8)						
100 (4)						
1200 (48)						

Flying Lead Option						
Leads	Length					
C1	400 (16)					
C2	200 (8)					
C3	100 (4)					
C4	1200 (48)					

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

Notes

IC44 Performance Data

Ironcore Water-Cooled Motors Series

Rated Perfomance	Symbol	Units		IC44-030		IC44-050			IC44-075		
Peak Force	F _m	N		1260			2101			3154	
Реак гогсе	Fp	lbf		283		472		709			
Continuous Force @ Tmax (1)	Fc	N		1036			1711		2568		
Continuous Force & Finax (1)	10	lbf		233			385			577	
Motor Constant @ 25°C	Km	N/√W		39.9			56.8		74.0		
			ical Spe	cificati	ons (2)						
		Winding Code	A1	A2	A3	A1	A2	A3	A1	A2	A3
Peak Current	lp	Arms	13.8	27.6	55.2	13.8	27.6	55.2	13.8	27.6	55.2
Continuous Current @Tmax	lc	Arms	9.9	19.7	39.5	9.8	19.6	39.1	9.8	19.5	39.1
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	6.2	1.6	0.39	8.5	2.1	0.53	11.3	2.8	0.71
Electrical Inductance ±20%	L	mH L-L	41.3	10.3	2.6	66.1	16.5	4.1	97.3	24.3	6.1
Back EMF Constant @ 25°C±10%	Ke	Vpeak/m/s L-L Vpeak/in/sec L-L	99.4 2.52	49.7 1.26	24.8 0.63	166 4.21	82.9 2.11	41.4 1.05	249 6.32	124 3.16	62.2 1.58
Force Constant		N/Arms	122	60.9	30.4	203	102	50.8	305	152	76.2
@ 25°C±10%	Kf	lbf/Arms	27.4	13.7	6.8	45.6	22.8	11.4	68.5	34.2	17.1
		Mech	anical S	Specific	ations						
Coil Assembly Mass ±15%	Mc	kg		9.6		13.9		19.2			
Cull Assembly Mass ±10%	IVIC	lbs		21.2		30.6		42.3			
Magnetic Way Type				MC030		MC050				MC075	
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1	
magnotic tray made 21070		lb/in		0.30			0.42			0.56	
		Figures of	Merit a	nd Addit	ional Da	ata					
Electrical Time Constant	Te	ms	6.7			7.8			8.6		
Max.Theoretical Acceleration (3)	Amax	g's	15.9			18.3			19.9		
Magnetic Attraction	Fa		kN 5.9			9.8			14.7		
		lbf	1322		2203			3305			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.082		0.061		0.046			
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130			130	

Notes

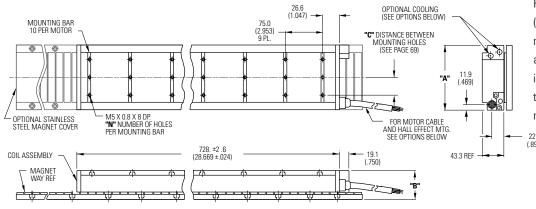
- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

^{3.} Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Rated Perfomance	Symbol	Units		IC44-100			IC44-150)		IC44-200	
Deels Farme	F	N		4202		6303				8407	
Peak Force	Fp	lbf		945		1417			1890		
Continuous Force @ Tmax (1)	Fc	N		3457			5133		6916		
Continuous Force @ Tillax (1)	ΓÜ	lbf		777			1154		1555		
Motor Constant @ 25°C	Km	N/√W		88.3			112			132	
		Electr	ical Spe	ecificati	ons (2)						
		Winding Code	A1	A2	A3	A1	A2	A 3	A1	A2	A3
Peak Current	lp	Arms	13.8	27.5	55.1	13.8	27.6	55.3	13.8	27.6	55.2
Continuous Current @Tmax	lc	Arms	9.9	19.8	39.5	9.8	19.6	39.2	9.9	19.8	39.6
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	14.1	3.5	0.88	19.8	5.0	1.2	25.5	6.4	1.6
Electrical Inductance ±20%	L	mH L-L	128	32.1	8.0	191	47.7	11.9	253	63.3	15.8
Back EMF Constant	Ke	Vpeak/m/s L-L	331	166	82.9	497	249	124	663	332	166
@ 25°C±10%	Ke	Vpeak/in/sec L-L	8.42	4.21	2.11	12.6	6.32	3.16	16.8	8.42	4.21
Force Constant	Kf	N/Arms	406	203	102	609	305	152	812	406	203
@ 25°C±10%	NI	lbf/Arms	91.3	45.6	22.8	137	68.5	34.2	183	91.3	45.7
		Mech	anical S	Specific	ations						
Coil Assembly Mass ±15%	Mc	kg		25.0			36.2			47.4	
Out Assembly Wass ±1070	IVIG	lbs		55.1		79.8			104		
Magnetic Way Type				MC100		MC150			MC200		
Magnetic Way Mass ±15%	Mw	kg/m		12.7		20.7				26.8	
, , , , , , , , , , , , , , , , , , ,		lb/in		0.71		1.16			1.50		
		Figures of	Merit a	nd Addit	ional D	ata					
Electrical Time Constant	Te	ms		9.1			9.6			9.9	
Max.Theoretical Acceleration (3)	Amax	g's	20.4			21.1			21.5		
Magnetic Attraction	Fa	kN		19.6			29.4			39.4	
		lbf	4406			6609			8855		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.036		0.026		0.020			
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130			130	

Notes:

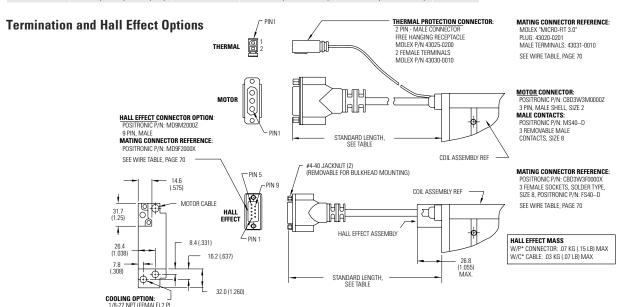

- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
 Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

^{4.} Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC44 Outline Drawings

Ironcore Water-Cooled Motors Series

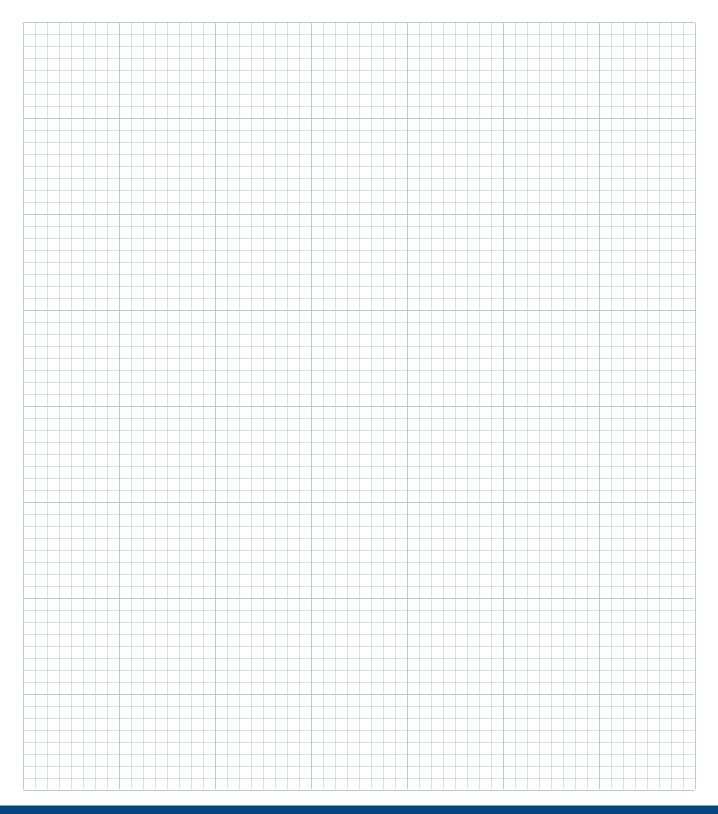


Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Motor Coil	Coil Width	Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Coolea	without Cover	w/ Magnet Cover	"N"
IC44-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC44-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC44-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC44-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC44-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC44-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

Notes:

- . Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)



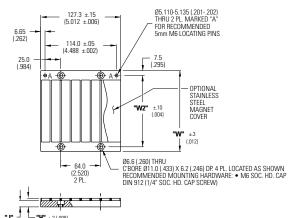
Connector Option						
Connector	Length					
P1	400 (16)					
P2	200 (8)					
P3	100 (4)					
P4	1200 (48)					
P1 P2 P3	400 (16) 200 (8) 100 (4)					

Flying Lead Option						
Leads	Length					
C1	400 (16)					
C2	200 (8)					
C3	100 (4)					
C4	1200 (48)					
C2 C3	200 (8) 100 (4)					

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

Notes

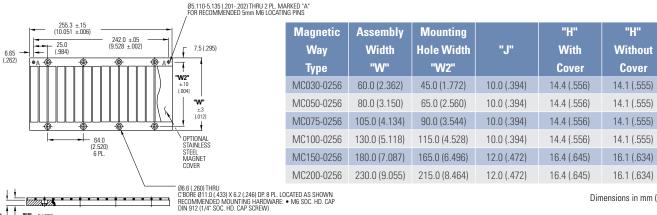
Ironcore Magnet Ways


MCxxx-0064

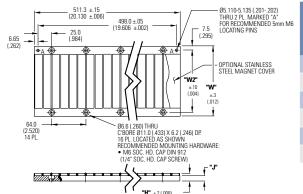
63.3 ±.15 (2.492 ±.006) Ø5.110-5.135 (.201-.202) THRU 2 PL. MARKED "A" FOR RECOMMENDED 5mm M6 LOCATING PINS 6.65 (.262) OPTIONAL STAINLESS STEEL MAGNET COVER "W2" ±.10 (.004) 96.6 (.260) THRU C'BORE 911.0 (.433) X 6.2 (.246) DP.
2 PL. LOCATED AS SHOWN. RECOMMENDED MOUNTING HARDWARE:
• M6 SOC. HD. CAP DIN 912 (1/4" SOC. HD. CAP SCREW) Magnet assembiles are modular and can be installed in multiples of same or alternate lengths. Standard lengths are shown below.

Magnetic Way	Assembly Width	Mounting Hole Width	"J"	"H" With	"H" Without
Туре	"W"	"W2"		Cover	Cover
MC030-0064	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC050-0064	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC075-0064	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC100-0064	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC150-0064	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0064	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)

Dimensions in mm (in)

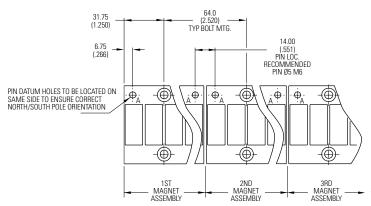

MCxxx-0128

Magnetic Way	Assembly Width	Mounting Hole Width	"J"	"H" With	"H" Without
Туре	"W"	"W2"		Cover	Cover
MC030-0128	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC050-0128	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC075-0128	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC100-0128	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC150-0128	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0128	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)


Dimensions in mm (in)

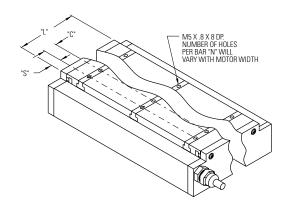
MCxxx-0256

Dimensions in mm (in)


MCxxx-0512

Magnetic Way Type	Assembly Width "W"	Mounting Hole Width "W2"	"J"	"H" With Cover	"H" Without Cover
MC030-0512	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC050-0512	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC075-0512	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC100-0512	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC150-0512	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0512	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)

Dimensions in mm (in)

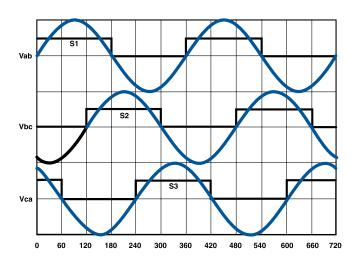

Typical Installation of Multiple Ironcore Magnet Assemblies

Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm. Multiple magnet assemblies can be installed to obtain the desired length. Shown below is the method to mount multiple assemblies.

RESULTANT GAP BETWEEN MAGNET ASSEMBLIES FROM PROPER PIN LOCATION. DO NOT BUTT MAGNET ASSEMBLIES.

Typical Mounting Bar Lengths & Mounting Holes Tabulation

Magnetic Coil Type	Number of Holes "N"	Spacing Between Holes "C"	Mounting Bar Length "L"	"S"
ICXX-030	2	16.0 (0.630)	30 (1.18)	7.0 (.276)
ICXX-050	2	36.0 (1.417)	50 (1.97)	7.0 (.276)
ICXX-075	3	32.0 (1.260)	75 (2.95)	5.5 (.217)
ICXX-100	3	36.0 (1.417)	100 (3.94)	14.0 (.551)
ICXX-150	5	32.0 (1.260)	150 (5.91)	11.0 (.433)
ICXX-200	6	36.0 (1.417)	200 (7.87)	10.0 (.394)

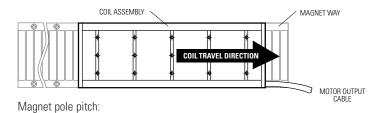

Dimensions in mm (in)

Wiring and Output

	Motor Wire Table SEE TABLE BELOW FOR AWG DIA			Hall Effect Wire Table 26 AWG 6.0 DIA (.24")			I Protection Winistor 26 AWG 3.		
Pin Number	Color or Wire No.	Function	Pin Number	Color	Function	Pin	Color	Transition Point	
1	Red	ØA	1	Gray	+5 VDC	4	DI LAMIL:	120°C (IC/ICD)	
2	White	ØB	2	Green	S1	I	Black/White	90°C (IL)	
3	Black	ØC	3	Yellow	S2	2	DI LAME:	120°C (IC/ICD)	
Connector Shell	Grn/Yel	GND	4	Brown	S3	2	Black/White	90°C (IL)	
Connector Shell	Violet	Shield	5	White	Return				
			Shell	Shield	Shield		see note 2		

Notes:

- Ground and shield connection at shell: first make/last break
- 2. TIC-X extender cable is shielded


Motor BEMF phases A,B,C relative to Hall effect devices S1,S2,S3 with coil travel direction towards the motor output cable assembly exit as shown below.

	IL WITH INDEL	
WINDING CODE	AWG	APPROX. CBL. DIA.
ALL (A1,A2,A3,A4)	18	5.6mm (.22 IN)
	ICD WIRE TABLE	

ICD WIRE TABLE		
WINDING CODE	AWG	APPROX. CBL. DIA.
ALL (A1 - A4)	22	5.1mm (.20 IN)

IC WIRE TABLE NON-COOLED			
WINDING CODE	AWG	APPROX. CBL. DIA.	
A1	18	5.6mm (.22 IN)	
A2	18	5.8mm (.22 IN)	
A3	14	8.9mm (.27 IN)	
A5	18	5.8mm (.22 IN)	
A6	14	6.9mm (.27 IN)	
A7	10	7.9mm (.31 IN)	

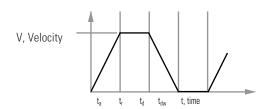
IC WIRE TABLE COOLED (AC)			
WINDING CODE	AWG	APPROX. CBL. DIA.	
A1	18	5.6mm (.22 IN)	
A2	14	8.9mm (.27 IN)	
А3	10	7.9mm (.31 IN)	
A5	14	8.9mm (.27 IN)	
A6	12	7.9mm (.31 IN)	

Both Ironcore (IC) and Ironless (IL) feature the same pole pitch, which is 32 mm (360 electrical degrees).

Note:

1. The diagram above refers to both Ironless and Ironcore motors

To size a Linear Motor, you will need to:


- 1. Define a Move Profile
- 2. Define the Load
- 3. Size the Motor and the Amplifier

From the move profile, we can calculate the maximum speed and the maximum acceleration/deceleration. From the load we can calculate all of the forces at constant speed and using the move profile all the dynamic forces during acceleration and deceleration. Once a motor is selected, the weight of the moving parts of the motor are added to the moving weight to calculate a total Peak Force and a total RMS force. The motor should be able to deliver the peak force and the calculated RMS force should be higher than the continuous force to ensure a known safety margin. The coil temperature rise can also be calculated to ensure that it is lower than the intended maximum temperature rise.

The maximum bus voltage and continuous and peak current can also be calculated and compared to the selected amplifier to be sure the calculated performances can be achieved.

1. Move Profile

Triangular/Trapezoidal

	Units	
SI	English	
S_{m} - Move displacement meters	inches	
t _a - Acceleration Time seconds	seconds	
t _r - Time run at constant speed seconds	seconds	
$t_{\rm d}$ - Deceleration Time seconds	seconds	
t_{dw} - Dwell Time seconds	seconds	
V_{m} - Max Velocity meter/sec.	inches/sec	
A_{m} - Acceleration meter/sec 2	inches/sec ₂	
D_{m} - Deceleration $$\operatorname{\text{meter/sec}}^{2}$$	inches/sec ₂	

example: Move 0.1 meter in 100 msec assuming $t_a = t_d$ and t_f =0, (assume triangular move)

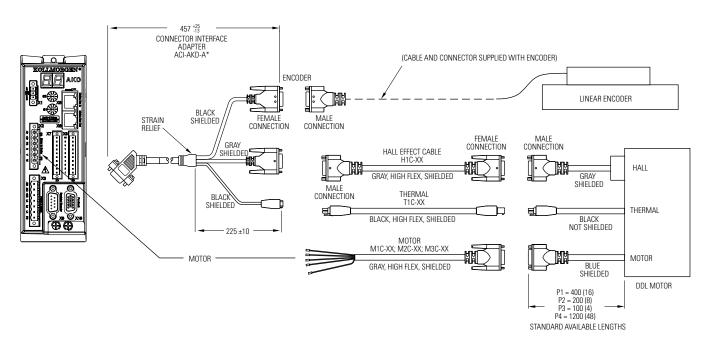
Max Speed: $V_m = 2 \bullet S_m / (t_a + t_d + 2 \bullet t_r)$ $V_m = 2 \bullet 0.1 / (100E-3)$ = 2 meter/sec

Max Acceleration/Deceleration

.u.x / 10001010	, 2 000101411011
Acceleration	$A_m = Vm / ta$
	$A_{\rm m} = 2 / 50E-3$
	= 40 meter/sec
	$A_{\rm m}$ "g" = $A_{\rm m}/9.81$
	a(g) = 40 / 9.81
	= 4.08 g

 $\begin{array}{ll} \textbf{Deceleration} & D_m = V_m/t_d \\ D_m = 2/50E\text{-}3 \\ = 40 \ meter/sec^2 \\ D_m \ "g" = D_m/9.81 \\ d(g) = 40/9.81 \\ = 4.08 \ g \end{array}$

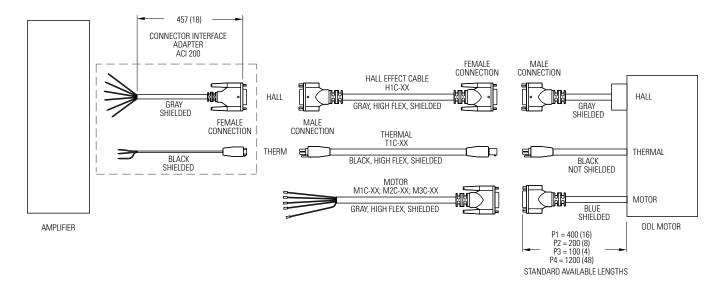
2. Load	Units	
	SI	English
F _{ext} - External Force only	N	lbf
(Cutting force, etc.)		
F _{acc} - Acceleration Force only	N	lbf
F _r - Run Force at constant speed	N	lbf
F _{dec} - Deceleration Force only	N	lbf
F _{am} - Max. Acceleration Force	N	lbf
F _{dm} - Max. Deceleration Force	N	lbf
F _{dw} - Dwell Force	N	lbf
F _{rms} - RMS Force	N	lbf
$\boldsymbol{\mu}$ - Coefficient of Friction	_	-
(bearing support)		
M _I - Load Mass	kg	lbs
M _c - Coil Mass	kg	lbs
M _{cb} - Counterbalance Mass	kg	lbs
F _a - Magnetic Attraction Force	N	lbf
CB - Counterbalance of load in %	_	-
q - Angle of Linear Displacement		
with horizontal		
(0°= horizontal, 90° vertical)	degrees	degrees
g - Gravity coefficient	9.81 m/s ²	386 in/s ²
n - Number of motors in parallel	_	_


High Flex Cable Sets

Features

- High Flex cable designed for dynamic, continuous flexing applications
- Cable track compatible
- Molded, high reliability connectors
- Oil resistant PVC jacket
- 105°C / 600V motor cable, 105°C / 300V Hall effect and thermal sensor cable
- CE compliant, fully shielded low impedance cable and connectors
- Fully tested, color coded, shipped with schematics
- Complete cable system for simple and reliable plug-and-play installation

Standard lengths of 1, 3, 6, 9, 12 and 15 meters available. For other lengths, consult Kollmorgen Customer Support.


High Flex Cables for Use with AKD

Note: ACI-AKD-A for use with Heidenhain Encoders. ACI-AKD-B for use with Renishaw Encoders.

Dimensions in mm (in)

High Flex Cables for Generic Applications

Dimensions in mm (in)

Minimum recommended Dynamic Bend Radius 15x cable diameter

Cable Assembly	AWG	Wire Diameter	Min. Dynamic Radius (15x wire Ø)
M1C	18	11.0mm (.430in)	165mm (6.5in)
M2C	14	12.6mm (.495in)	185mm (7.3in)
M3C	12	14.2mm (.560in)	215mm (8.5in)
T1C	22	6.0mm (.235in)	90mm (3.5in)
H1C	26	6.0mm (.235in)	90mm (3.5in)

Notes:

- Cables are designed for minimum life cycle of millions of cycles under ideal conditions. Actual field application conditions may or may not produce the cable life described here in.
- 2. To ensure longest possible cable life under dynamic conditions, cables should be relaxed 24 hours before use by hanging freely at its mid-point. Cable is ready when very little memory is present. Cable should be installed in the 'plane of original flexure.' Cable should be installed with lowest possible mechanical tension. Avoid torsional bending.
- 3. Minimum recommended dynamic bend radius is 15x largest cable diameter used in cable track; use a large bend radius whenever possible. Clearance between cables and track should be a minimum of 20% of the cable diameter. Use of a clamp or nylon cable tie that creates localized stress within the cable track must be avoided. Minimum distance from the clamping point to the start of the bend radius must be 25x the largest cable diameter used in the track.
- 4. Cable track manufacturer should be consulted for application assistance.

Application Sizing

BASIC FORMULAS*:

We assume a general case where we have n motors solidly coupled pushing the load and a possible counterbalance weight Mcb (Mostly for vertical displacement).

Example of Coefficient of Friction µ:

Linear bearing w/ balls	0.002 - 0.004
Linear bearing w/ rollers	0.005
Steel on oiled steel	0.06
Steel on dry steel	0.2
Steel on concrete	0.3

Counterbalance Weight:

 $M_{cb} = MI \bullet CB/100$

Acceleration Force only:

Facc = $[(M_1/n) \bullet (1 + CB/100) + M_c] \bullet Am$

Run Force at constant speed:

$$F_r = (M_1/n + M_c) \bullet g \bullet SIN(q) + m \bullet COS(q) - (Mcb/n) \bullet g + F_a \bullet \mu + F_{ext}/n$$

Deceleration Force only:

$$F_{dec} = [(M_1/n) \bullet (1 + CB/100) + M_c] \bullet D_m$$

Maximum Acceleration Force:

$$F_{am} = F_{acc} + F_r$$

Maximum Deceleration Force:

$$F_{dm} = F_{dec} - F_r$$

Dwell Force:

$$F_{dw} = (M_1/n + M_c) \bullet g \bullet [SIN(q)] - (M_{cb}/n) \bullet g$$

RMS Force:

$$F_{rms} = \sqrt{\frac{F_{am}^{2} \bullet t_{a} + F_{r}^{2} \bullet t_{r} + F_{dm}^{2} \bullet t_{d} + F_{dw}^{2} \bullet t_{dw}}{t_{a} + t_{r} + t_{d} + t_{dw}}}$$

For English units use weight in lbs instead of mass • g.

3. Size the Motor and Amplifier

example:

Moving Weight:	MI = 0.5kg
Number of Motors:	n = 1
Horizontal Move:	q = 0
Counterbalance Force:	$M_{cb} = 0$
External Force:	$F_{\text{ext}} = 0$
Friction Coefficient:	m = 0.01

Assume same move as above with a Dwell Time of 50 ms.

Run Force at Constant Speed:	$F_r = 0.5 \bullet 9.81$	●0.01=0 .05 N
Acceleration Force only:	$F_a = 0.5 \bullet 40$	= 20 N
Deceleration Force only:	$F_{d} = 0.5 \bullet 40$	= 20 N
Maximum Accel Force:	$F_{am} = 20 + 0.05$	= 20.05 N
Maximum Decel Force:	$F_{dm}^{(i)} = 20 - 0.05$	= 19.95 N
Rms Force:	um	

$$F_{rms} = \sqrt{\frac{(20.05)^2 \bullet (50E-3) + (19.95)^2 \bullet (50E-3)}{100E-3 + 50E-3}}$$

$$F_{rms} = 16.3 \text{ N}$$

Motor Sizing:

If we select an ironless motor for smoothest possible move we can use Motor IL060-30A1. This motor has a coil mass of 0.21 kg and no attractive force. By adding that weight in equations above, we need an additional Force of 0.21 \bullet 40 \bullet 0.01= 0.084 N. So Peak Force is 20.05 + 0.08 = 28.45 N and RMS force: 23.19 N. This motor will have a safety factor of (38-23.19) \bullet 100/38 = 39%.

Sizing the Amplifier :	Units		
	SI	English	
I _a - Max Acceleration Current	Α	Α	
I _r - Run Current	Α	Α	
I _d - Max Deceleration Current	Α	Α	
I _{dw} - Dwell Current	Α	Α	
I _{rms} - RMS Current	Α	Α	
K _f - Force Constant	N/A	lbf/A	
R _m - Motor Electrical Resistance	Ohms L-L	Ohms L-L	
K _e - Back EMF Constant	Vpeak/m/s	Vpeak/in/s	
V _{bus} - Bus Voltage	VDC	VDC	
L - Electrical Inductance	H L-L	H L-L	
Max Acceleration Current:	$I_a = F$	am/K _f	
Run Current at constant Speed:	$I_r = I$	F_r/K_f	
Max Deceleration Current only:	$I_d = F$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
Dwell Current:	$I_{dw} = I$	F_{dw}/K_f	
RMS Current:	$I_{rms} = I$	F_{rms}/K_f	

^{*} All calculations are given in SI units.

Bus Voltage:

If we assume a sine wave drive with a phase advance [] (degrees) and full conduction, the minimum bus voltage (see Fig. 1) is:

$$V_{b1} = 2.4 \text{ (Volts)}$$

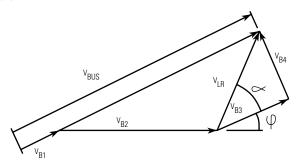
$$V_{h2} = K_e \bullet V_m$$

$$V_{h3} = 1.225 \bullet R_{m \, hot} \times I_{rms}$$

$$V_{b4} = 7.6953 \bullet L \bullet I_{rms} \bullet Vm/Pitch$$

$$av = ARCTANGENT (V_{b4}/V_{b3})$$

$$V_{lr} = \sqrt{V_{b3}^2 + V_{b4}^2}$$


$$V_{bre} = V_{b2} + VIr \bullet COS(av + \square)$$

$$V_{bim} = V_{lr} \bullet SIN(av + \square)$$

$$V_{bus} = V_{b1} + \sqrt{V_{bro}^2 + Vbim^2}$$

Note: If there is no Phase advance take $\square=0^{\circ}$.

Figure 1:

Thermal Considerations:

	Units	
	SI	English
∆ ☐ - Coil increase of temperature	°C	°F
R _{th} - Thermal Resistance	°C/W	°F/W
K _m - Motor Constant	N/\sqrt{W}	lbf/\sqrt{W}
P _{out} - Output Power	W	W

Coil Temperature rise

$$\Delta \square = R_{th} \bullet (F_{rms}/Km)^2$$

Resistance of Coil hot (copper)

$$R_{m,hot} = \frac{R_{ambient} (234.5 + \square_{hot})}{(234.5 + \square_{hot})}$$

Power Losses

$$P_{lrms} = \Delta \square / R_{th} = \underbrace{ (\square_{hot} - \square_{ambient})}_{R_{th}}$$

Output Power

$$P_{out}(max) = F_{am} \bullet V_m$$

Example: In above example with:

$$R_{th} = 1.61 \, ^{\circ}\text{C/W}$$

 $K_m = 4.7 \, \text{N/} \sqrt{\text{W}}$

Coil Temperature rise: $\Delta \Box = 1.61 \cdot (23.19/4.7)^2 = 39.2 \, ^{\circ}\text{C}$

Power Losses PI = 39.2/1.61 = 24.34 Watts Max output Power $P_{out}(max) = 57$ Watts.

The Use of the Motor Constant K_m:

Cognizance of the heat load being generated by the linear motor is an important consideration in the application of any linear motor. Linear motors are direct drive devices, typically mounted very close to the moving load. Therefore, any heat generated by the linear motor needs to be managed to avoid affecting the process or workpiece that the moving load is carrying. The motor constant $K_{\rm m}$ is a powerful parameter that can be used to determine this heat load. $K_{\rm m}$ equals:

$$K_m = \frac{F}{\sqrt{P_c}}$$

where the RMS force F is in Newtons, the RMS heat load Pc is in watts and Km is in units of N/ \sqrt{W}

Application Sizing

The motor constant, K_M , allows us to determine motor performance capabilities such as shown in the following two examples. In the first example, we use K_M to calculate, for a given force, how many watts of generated heat are dissipated by the motor's coil assembly. In the second, we use K_M to determine the maximum RMS force developed by the motor when the dissipated power is limited to some value.

1. An application requires a continuous thrust force of 200 Newtons. The IC11-050 ironcore motor is a good candidate, having a continuous force rating of 276 Newtons and a K_M of 32.0 N/W. Therefore, since resistance rises 1.405 times at 130°C from the ambient value at 25°C, and since resistance is the square root denominator of K_M , we must write our equation as follows,

Force =
$$\frac{K_M}{\sqrt{Factor}}$$
 $\sqrt{Power (dissipated)}$

$$200 = \frac{32.0}{\sqrt{1.405}} \sqrt{\text{Watts}}$$

Watts = 54.9

This value of watts is the power or heat generated by the motor. It is interesting to note that for the same application, a larger IC11-100 ironcore motor, with a K_M of 49.1 N/ \sqrt{W} , would dissipate only 23.3 watts for the same force, F.

2. The same application requires that no more than 45 watts are to be dissipated by the motor into the surrounding structure and environment. What is the maximum RMS force that the IC11-050 motor may produce while not exceeding this power limit?

Maximum RMS Force =
$$\frac{32.0}{\sqrt{1.405}}$$
 $\sqrt{45}$ = 181 N

Therefore, if the motor delivers no more than 181 N of thrust force on an RMS basis, then this same motor will not dissipate more than 45 watts.

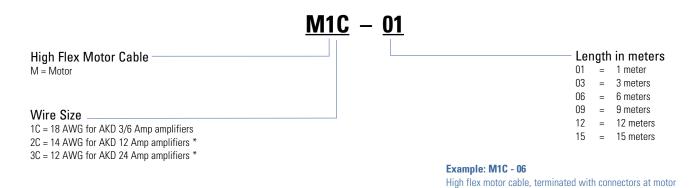
Continuous Force Fc as a Function of Ambient Temperature

In our data sheets the continuous rated force Fc is the RMS force that the motor can supply continuously 100% of the time, assuming the ambient temperature is 25 degrees C and with the coils achieving a maximum temperature of 130 degrees C. At higher (or lower) ambient temperatures, the Fc of the motor must be adjusted by a factor that is determined by the following equation:

Factor =
$$\sqrt{\frac{(130 - \square_{Amb})}{105}}$$

where \square_{Amb} = Ambient Temperature

This factor vs. ambient temperature works out as:


5°C	10	15	20	25	30	35	40	45
1.091	1.069	1.047	1.024	1	0.976	0.951	0.926	0.900

Application Sizing Worksheet

Customer:		Project Name:				
Contact:		Axis Name: Prepared by:				
Telephone:						
fax:		E-Mail:				
Move						
Axis Orientation		□ mm seconds □ meters/sec □ meters/sec □ meters/sec² seconds seconds	□ vertical □ in □ in □ in □ inches/sec □ inches/sec □ inches/sec² □ g			
Loads	_		_ 0 30.10			
Friction Coefficient Max Load Mass Thrust Force Is this thrust present during Accel/Decel?		□ kg □ N	□ Ib □ Ibf □ No			
Precision						
RepeatabilityAbsolute AccuracyResolution		□ μm	□ inch □ inch □ inch			
Encoder Feedback						
Signal Period						
Environment						
Ambient Temperature		□ Yes □ Yes	□ °F □ °F □ No If Yes Class: □ No □ No Pressure:			
Amplifier & Power Supply						
Max Voltage Max Current Power Supply		Amps 🖵 Single Phase	☐ Three Phase			

Model Nomenclature

High Flex Cable Numbering System

and amplifier ends, 18 AWG, for 3 or 6 Amp AKD.

High Flex Hall Effect Cable

High Flex Hall Effect

Congression 1 = 1 meter

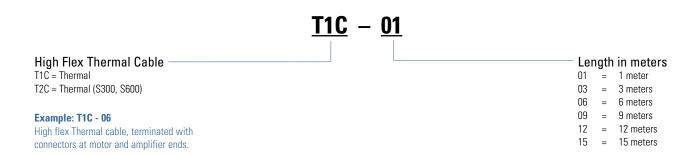
Congression 2 = 3 meters

Example: H1C - 06

High flex Hall Effect cable, terminated with connectors at motor and amplifier ends.

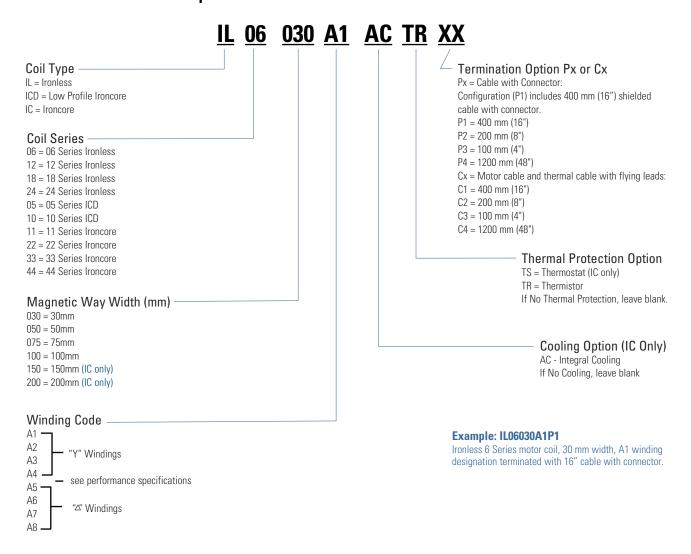
High Flex Hall Effect Cable

Congression 2 = 1 meters


Congression 3 = 3 meters

Congression 3 = 3 meters

Congression 4 = 1 meters

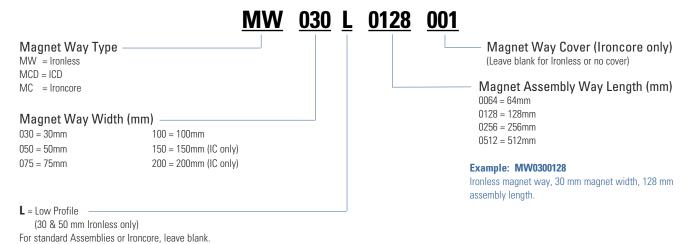

Congression 5 = 15 meters

Congression 5 = 15 meters

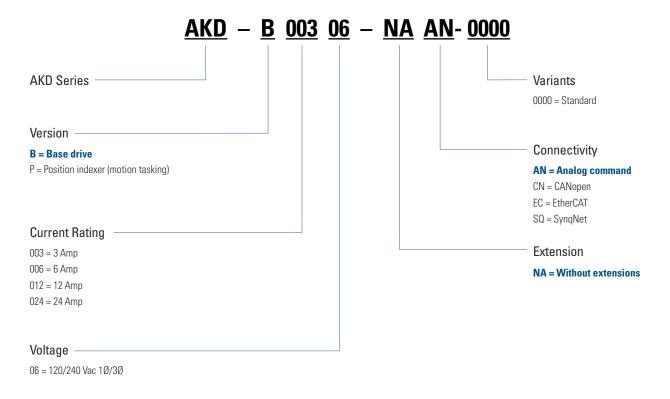
^{*} For application assistance regarding cable selection for these and other higher current rated amplifiers, contact a Kollmorgen Customer Support representative.

Coil Model Number Description

Hall Effect Assembly Model Number Description


Hall effect assembly with digital outputs for Ironless motor terminated with 16" cable with connector.

<u>HDIL</u> <u>100</u> <u>XX</u>



Model Nomenclature

Magnetic Way Model Number Description

AKD Servo Drive

Note: Options shown in bold blue text are considered standard.

MOTIONEERING® Application Engine

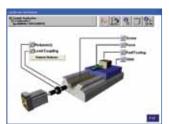
To help select and size Kollmorgen components, this Windows®-based motor-sizing program takes a systems approach to the selection of brushless, DC servomotors, stepper motors and drives. MOTIONEERING application engine, available at www.kollmorgen.com, uses a project concept for the collection and saving of rotary and linear multi-axis load information. This provides the user the flexibility to sum the effects of multiple axes of motion for power supply and shunt regeneration sizing.

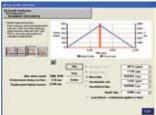
A wide variety of linear and rotary mechanisms are provided including lead screw, rack and pinion, conveyor, nip rolls, cylinder, rotary, and direct data-entry using unique sizing algorithms and product databases criteria.

The searchable database consists of hundreds of systems on product combinations including rotary housed and frameless brushless servomotors, direct drive rotary and linear brushless servomotors, linear positioners (electric cylinders, rodless positioners, and precision tables) and stepper systems.

The application engine also provides versatile units-of-measure selection options for mechanism and motion profile dataentry, with the ability to convert data into other available units. Online Help explains program functions and the definition of terms and equations used in the program.

Features


- Group multiple mechanisms within a "project" organize and combine data for power supply and regeneration sizing
- Types of mechanisms for analysis include lead screw, rack and pinion, conveyor, nip rolls, rotary and direct drive linear motor
- Motion profile options include simple triangle, 1/3-1/3-1/3 trapezoidal, variable traverse trapezoidal, and more
- Search results display shows color highlighted solution set of options for easy evaluation of system specifications and selection


Supported Operating Systems

Microsoft® Windows 2000, XP, Vista

MOTIONEERING 6.0 includes

- Electric cylinder sizing and selection with AKM servomotor systems
- Rodless actuator with AKM servomotor systems (performance curves included)
- Precision table with AKM servomotor systems (performance curves included)
- PDF report functionality (includes application, drive, motor, positioner, and system specifications all in one easy-to-read report)

