Standard AC Motors

Induction

Reversi

Electro Brake M

High-Str V Serie

Clutch

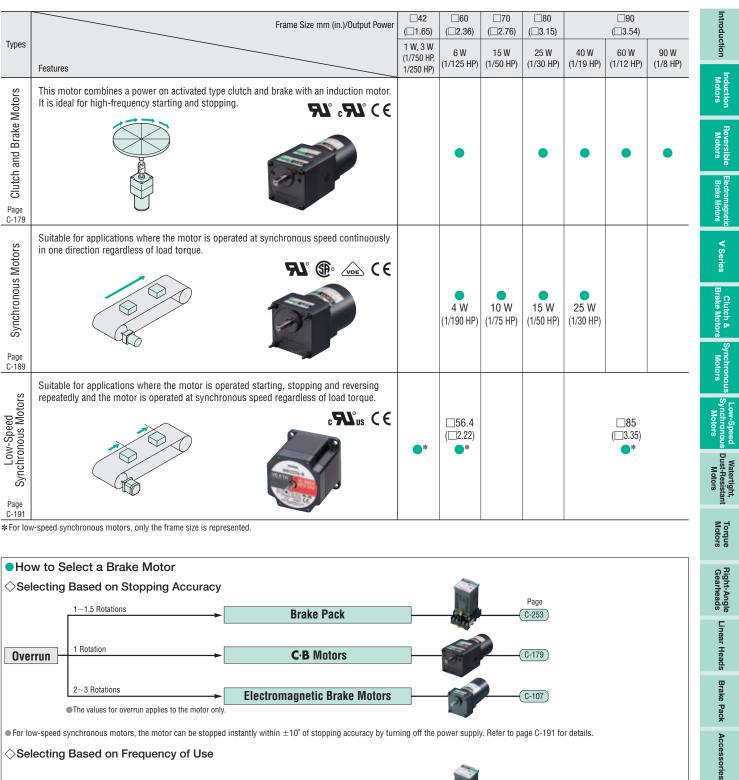
Synchro

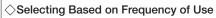
Low-Sp

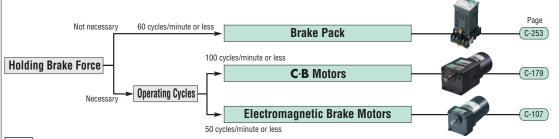
Standard AC Motors

Constant Speed Motors

Page
Features and Types of Constant Speed Motors C-10
How to Read SpecificationsC-12
Common SpecificationsC-17
Induction MotorsC-19
Reversible MotorsC-75
Electromagnetic Brake Motors C-107
V Series C-149
Clutch and Brake MotorsC-179
Synchronous Motors C-189
Low-Speed Synchronous Motors C-191


troduction
Induction Motors
Reversible Motors
Electromagnetic Brake Motors
V Series
Clutch & Brake Motors
Synchronous Motors
Low-Speed Synchronous Motors
Watertight, Dust-Resistant Motors
Torque Motors
Right-Angle Gearheads
Linear Heads Brake Pack Accessories
Brake Pack
Accessories
Installation


Features and Types of Constant Speed Motors


Constant speed motors come in various types as shown below. Select from a wide range of products depending on the application, required functions, output, etc.

		Frame Size mm (in.)/Output Power □42 □60 □70 □80 □90 (□1.65) (□2.36) (□2.76) (□3.54)	□104 (□4.09)
Types	Features		90 W 200 W 1/8 HP) (1/4 HP)
	Suitable for applications where the motor is operated continuously in one direction.	World K Series These motors conform to major safety standards and support global power supply voltages for use in major countries. 2-Pole, High-Speed (1/12 HP, 1) (1/12 HP, 1)	
Induction Motors	000	V Series C Series (1/19 HP, 1/12 HP) (1/12 HP, 1/12 HP) V Series Adopted High-Strength, Long Life, Low Noise gearheads. They also conform to major safety standards and support global power supply voltages. C Su support C E	
Page C-19		BH Series The BH Series provides high-output power of 200 W (1/4 HP) in a compact 104 mm (4.09 in.) square mounting configuration. They also conform to major safety standards and support global power supply voltages.	•
Reversible Motors	Suitable for applications where the motor reverses its direction repeatedly.	World K Series These motors conform to major safety standards and support global power supply voltages for use in major countries. Wus C C C Wus (C C Wus (C C) Wus (C	•
Page C-75		V Series Adopted High-Strength, Long Life, Low Noise gearheads. They also conform to major safety standards and support global power supply voltages.	•
	Suitable for applications where the load must always be held in place.	World K Series These motors conform to major safety standards and support global power supply voltages for use in major countries.	•
Electromagnetic Brake Motors		V Series Adopted High-Strength, Long Life, Low Noise gearheads. They also conform to major safety standards and support global power supply voltages.	•
Page C-107		BH Series The BH Series provides high-output power of 200 W (1/4 HP) in a compact 104 mm (4.09 in.) square mounting configuration. They also conform to major safety standards and support global power supply voltages.	•

Notes

The operating cycles are based merely on brake response. The value specified above is the maximum, so it may not be possible to repeat braking operation at this frequency. In an actual application, be certain the surface temperature of the motor case remains at 90°C (194°F) or less.

• For low-speed synchronous motors, if operated within the permissible load inertia, the motor can start and reverse within 1.5 cycles of power supply frequency. Refer to page C-191 for details.

TEL: (800) 468-3982 E-mail: techsupport@orientalmotor.com Installation

How to Read Specifications

When selecting a motor and gearhead, you should read the specifications to make sure that the motor you select meets your application needs. Shown below is an explanation of how you should read the specifications on some important items.

How to Read Motor Specifications

Motor Specifications

Motor Specifications Table (Example)

Specifications – Continuous Rating–6

			(1)			(2)	(3)	(4)	(5)	
	Model Upper Model Name: P Lower Model Name ():	inion Shaft Type	Output Power	Voltage	Frequency	Current	Starting Torque	Rated Torque	Rated Speed	Capacitor
	Lead Wire Type Dimension ①	Terminal Box Type Dimension ②	W HP	VAC	Hz	А	mN∙m oz-in	mN∙m oz-in	r/min	μF
TP	4IK25GN-AW2U (4IK25A-AW2U)	4IK25GN-AW2TU (4IK25A-AW2TU)	25 1/30	Single-Phase 110 Single-Phase 115	60	0.46	120 17.0	170 24	1450	6.5

Output Power: The amount of work that can be performed in a given period of time. It can be used as a criteria for motor capability.

O Current: The current value used by a motor when the motor is producing rated torque.

③ Starting Torque: This term refers to the torque generated the instant the motor starts. If the motor is subjected to a friction load smaller than this torque, it will operate.

④ Rated Torque: This is the torque created when the motor is operating most efficiently. Though the maximum torque is far greater, rated torque should, from the standpoint of utility, be the highest torque.

⑤ Rated Speed: This is the speed of the motor when the motor is producing rated torque.

🙆 Rating: The time that a motor can operate continuously at rated output (torque). With a continuous rating, a motor can operate continuously.

ഹ

Electromagnetic Brake (Power Off Activated Type)

S	pecifications Ta	able (Example	e)			U
	Motor Model	Voltage	Frequency	Current	Input	Holding Brake Torque mN·m
		VAC	Hz	А	W	oz-in
	25GN-AW2MU	Single-Phase 110	60	0.09	6	100
4RK	25A-AW2MU	Single-Phase 115	00	0.09	0	14.2

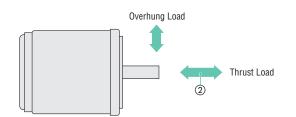
①Holding Brake Torque: This refers to the holding brake torque of the electromagnetic brake and expresses the size of holding torque at the motor output shaft.

When a gearhead is connected, calculate the holding torque at the gearhead output shaft with the following formula.

Holding torque at the gearhead output shaft
$$T_G = T_M \times i$$

 T_G : Holding torque at the gearhead output shaft

 T_M : Holding torque at the motor output shaft


i : Gearhead gear ratio

Standard AC Motors

Permissible Overhung Load and Permissible Thrust Load of Motors

Specifications Table for Permissible Overhung Load (Example)

	Motor			Permissible 0	verhung Load	
Frame Size	Output Shaft Diameter	Series	10 mm (0.39 in.) from shaft end	20 mm (0.79 in	.) from shaft end
🗆 mm (in.)	φ mm (in.)	361165	N	lb.	N	lb.
60 (2.36)	6 (0.2362)	World K	50	11.2	110	24

① Permissible Overhung Load: The value ① shown in the table above is the one for the permissible overhung load. As shown in the figure to the left, this term refers to the permissible value of the load applied in a direction perpendicular to the motor shaft.

2 Permissible Thrust Load: As shown in the figure to the left, this term refers to the permissible value of the load applied in the axial direction to the motor shaft. Keep the thrust load to half or less of motor mass.

The calculating method of overhung load applied on the output shaft is the same as for a gear shaft. Refer to the permissible overhung load and permissible thrust load of gearheads for details. Permissible overhung load and permissible thrust load of gearheads → Page C-16

How to Read Gearhead Specifications

Some gearheads other than those for constant speed motors are listed.

Gearmotor – Torque Table

Gearmotor - Torque Table (Example) (1)◇60 Hz Unit = Upper values: N·m/ Lower values: Ib-in Speed Model 600 500 360 300 240 200 120 100 72 60 50 30 144 36 24 20 18 15 12 10 r/min Motor/ Gear Ratio 3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50 60 75 90 100 120 150 180 Gearhead 4IK25GN-AW2U 0.41 0.50 0.69 0.83 1.0 1.2 1.7 2.1 2.5 3.1 3.7 4.5 5.6 6.7 8 8 8 8 8 8 4GN SA 4IK25GN-CW2 3.6 4.4 6.1 7.3 8.8 10.6 15.0 18.5 22 27 32 39 49 59 70 70 70 70 70 70

1

①Permissible Torque: It refers to the value of load torque driven by the gearhead's output shaft. Each value is shown for the corresponding gear ratio.

Permissible torque when a gearhead is connected can be calculated with the formula below. Permissible torque for some products are omitted. In that case, use the formula below to calculate the permissible torque. $T_G = T_M \times i \times \eta$ TG : Permissible torque of gearhead

Permissible torque

- T_M : Motor torque
- : Gearhead gear ratio i
- : Gearhead efficiency η

Introduction

Brake Motors

Constant Speed Motors

Gearhead Efficiency

Gear Ratio	3	3.6	5	6	7.5	9	12.5	15	18	25	30	36	50	60	75	90	100	120	150	180	250	300	360
2GN_SA, 3GN_SA, 4GN_SA					81%						73%					60	5%						
5GN□SA, 5GC□KA					0170						1370					00	070						
OGN_KA,5GE_SA, 5GU_KA, 5GCH_KA			81	۱%				73%				66%					59	9%					
BH6G2-			90)%					86	i%						81	%						
$\mathbf{GV2G}$, $\mathbf{GV3G}$, $\mathbf{GV4G}$						90	%							86	5%						81%		
GVH5G						90%							8	6%									
GVR5G					90	%					86	5%					81						

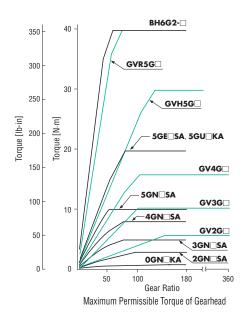
• For BH6G2- RH and BH6G2- RA, gearhead efficiency of all gear ratio is 73% at the rated speed and starting.

• Gearhead efficiency of all the decimal gearheads is 81%.

• For the efficiency of right-angle gearheads, refer to the page for right-angle gearheads. The gearhead efficiency of right-angle gearheads -> Page C-230

Gear Ratio	5	10	15	20	30	50	100	200
GFS2G		90)%			86%		81%
GFS4G		90)%			86%		81%
GFS5G		90)%			86%		81%
GFS6G		90)%		86	i%	81	%

Model	Gear Ratio	5	10	15	20	30	50	100	200
GFS2G FR		80%				85%			
GFS4G FR					85	%			
GFS5G FR					85	%			
GFS6G FR					85	%			


Note

• The transmission efficiency in the table above is the value at room temperature. The transmission efficiency of the gear head varies according to the ambient temperature. Care should be taken when using in a low-temperature environment as the transmission efficiency will drop along with the output torque.

Maximum Permissible Torque

The gearhead output torque increases proportionally as the gear ratio increases. However, the load torque is saturated at a certain gear ratio because of the gear materials and other conditions. This torque is called the maximum permissible torque.

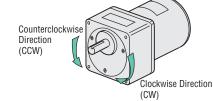
The maximum permissible torque of typical gearheads are shown in the figure to the right.

Standard AC Motors

Speed and Rotation Direction

Gearmotor - Torque Table (Example)

◇60 Hz	(1)														ι	Init = U	pper va	lues: N	m/ Low	ver value	es: Ib-in
Model	Speed r/min	600	500	360	300	240	200	144	120	100	72	60	50	36	30	24	20	18	15	12	10
Motor/ Gearhead	Gear Ratio	3	3.6	5	6	7.5	9	12.5	15	18	25	30	36	50	60	75	90	100	120	150	180
4IK25GN-AW2 U 4IK25GN-CW2 E	4GN□SA	0.41 3.6	0.50 4.4	0.69 6.1	0.83 7.3	1.0 8.8	1.2 10.6	1.7 15.0	2.1 18.5	2.5 22	3.1 27	3.7 32	4.5 39	5.6 49	6.7 59	8 70	8 70	8 70	8 70	8 70	8 70


① Speed: This refers to the speed at the gearhead output shaft. The speeds, depending on gear ratio, are shown in the "Gearmotor – Torque Table." The speed is calculated by dividing the motor's synchronous speed by the gear ratio. The actual speed is 2~20% less than the displayed value depending on the load.

The speed is calculated with the following formula.

Speed $N_G = \frac{N_M}{i}$ N_G : Gearhead speed [r/min] N_M : Motor speed [r/min]

i : Gearhead gear ratio

② Rotation Direction: This refers to the rotation direction viewed from the output shaft. A colored background (_____) indicates gear shaft rotation in the same direction as the motor shaft, while the others rotate in the opposite direction. The direction of gearhead shaft rotation may differ from motor shaft rotation depending on the gear ratio of the gearhead. The gear ratio and rotation direction of each gearhead is shown in the table below.

Same direction as the motor shaft

																	<u> </u>	Jpposi	te dire	ction	as the	motor s	inatt
Gear Rat	0 3	3.6	5	6	7.5	9	12.5	15	18	25	30	36	50	60	75	90	100	120	150	180	250	300 3	60
2GN SA, 3GN SA, 4GN SA,																							
5GN ^{SA,} 5GC ^{KA}																							
OGN KA, 5GE SA, 5GU KA, 5GCH KA																							
BH6G2-																							
$\mathbf{GV2G}$, $\mathbf{GV3G}$, $\mathbf{GV4G}$																							
GVH5G																							
GVR5G																							

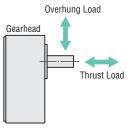
Connection of a decimal gearhead reduces the speed by 10:1, but does not affect the rotation direction.

Model	Gear Ratio	5	10	15	20	30	50	100	200
GFS2G									
GFS4G									
GFS5G									
GFS6G									

Introduction

V Series

Constant Speed Motors


Permissible Overhung Load and Permissible Thrust Load of Gearheads

Specifications Table for Permissible Overhung Load and Permissible Thrust Load (Example)

_								Ų	2	
		Gear Ratio	Gear Ratio Max. Permissible Torque			Permissible 0	- Permissible Thrust Load			
	Model				10 mm (0.39 in.) from shaft end				20 mm (0.79 in.) from shaft end	
			N∙m	lb-in	N	lb.	N	lb.	N	lb.
	4GN□SA	3~18	8.0	70	100	22	150	33	50	11.2
4		25~180	0.0	70	200	45	300	67	50	11.2

①Permissible Overhung Load: The value ① shown in the table above is the one for the permissible overhung load. This term refers to the permissible value of the load applied in a direction perpendicular to the gearhead output shaft as shown in the figure to the right.

2 Permissible Thrust Load: The value (2) shown in the table above is the one for permissible thrust load. This term refers to the permissible value of the load applied in the axial direction to the gearhead output shaft as shown in the figure to the right.

When a chain, gear, belt, etc. is used as the transmission mechanism, the overhung load is always applied on the gearhead output shaft. The overhung load is calculated with the following formula.

Overhung load
$$W = \frac{K \times T \times f}{\gamma}$$

W : Overhung load [N]

- K : Load coefficient for driving method (on the right)
- T : Torque at gearhead output shaft [N·m]
- f : Service factor (on the right)
- γ : Effective radius of gear or pulleys [m]

◇Load Coefficient for Driving Method (K)

Drive System	K
Chain or synchronous belt	1
Gear	1.25
V-belt	1.5
Flat belt	2.5

\bigcirc Service Factor (*f*)

Load Type	Example	Factor <i>f</i>
Uniform Load	Uni-directional continuous operation For driving belt conveyors and film rollers that are subject to minimal load fluctuation	1.0
Light Impact	 Frequent starting and stopping Cam drive and inertial body positioning 	1.5
Medium Impact	Frequent instantaneous bi-directional operation, starting and stopping of reversible motors Frequent instantaneous stopping by brake pack of AC motors Frequent instantaneous starting and stopping by brushless motors	2.0

Permissible Load Inertia J of Gearhead

This refers to the permissible value for load inertia (J) at the gearhead output shaft. Convert the permissible value at the motor output shaft into the permissible value at the gearhead output shaft with the following formula.

Gear ratio 3:1~50:1 $J_G = J_M \times i^2$ Gear ratio 60:1 or higher $J_G = J_M \times 2500$

 J_{G} : Permissible load inertia at the gearhead output shaft J (×10⁻⁴ kg·m²)

- J_M : Permissible load inertia at the motor shaft J (×10⁻⁴ kg·m²)
- *i* : Gear ratio (Example: i = 3 means the gear ratio of 3:1)

Permissible Load Inertia at the Motor Shaft (Example)

Number of Phase	Frame Size	Output Power	Permissible Load Inertia at the Motor Shaft J [×10 ⁻⁴ kg·m ² (oz-in ²)]		
Single-Phase	□80 mm (□3.15 in.)	25 W (1/30 HP)	0.31 (1.70)		

For some products that are combination types, the permissible load inertia at the gearhead output shaft is shown as the specifications values, divided with each gear ratio.

Common Specifications

Some specifications other than those for constant speed motors are listed.

Permissible Overhung Load and Permissible Thrust Load of Motors

Permissible Overhung Load

	Motor	Permissible Overhung Load					
Frame Size	Output Shaft Diameter	Series	10 mm (0.39 in.) from shaft end 20 mm (0.79 in.) from shaft				
🗆 mm (in.)	φ mm (in.)	Selles	N	lb.	N	lb.	
42 (1.65)	5 (0.1969)	World K	40	9.0	-	-	
60 (2.36)	6 (0.2362)	World K	50	11.2	110	24	
70 (2.76)	6 (0.2362)	World K	40	9.0	60	13.5	
80 (3.15)	8 (0.3150)	World K	90	20	140	31	
00 (3.13)	10 (0.3937)	World K	110	24	120	27	
90 (3.54)	10 (0.3937)	World K	140	31	200	45	
90 (3.54)	12 (0.4724)	World K	240	54	270	60	
104 (4.09)	14 (0.5512)	BH, BHF	320	72	350	78	

Permissible Thrust Load

Avoid thrust load as much as possible. If thrust load is unavoidable, keep it to half or less of the motor mass.

Permissible Overhung Load and Permissible Thrust Load of Gearheads

		May Dormi	sible Torque		Permissible Overhung Load				
Model	Gear Ratio			10 mm (0.39 in.) from shaft end		20 mm (0.79 in.) from shaft end		Permissible Thrust Load	
		N⋅m	lb-in	N	lb.	N	lb.	N	lb.
0GN KA	3~180	1.0	8.8	20	4.5	-	-	15	3.3
2GN SA	3~18	3.0	26	50	11.2	80	18	30	6.7
ZGNLJA	25~180	3.0	20	120	27	180	40	30	0.7
3GN SA	3~18	- 5.0	44	80	18	120	27	40	9
JON_JA	25~180		44	150	33	250	56	40	Ð
4GN□SA	3~18	8.0	70	100	22	150	33	50	11.2
	25~180	0.0	0.0 70	200	45	300	67	50	11.2
5GN□SA 5GC□KA	3~18	10	88	250	56	350	78	100	22
	25~180	10	00	300	67	450	101		22
5GE_SA	3~9		177	400	90	500	112	150	33
5GU KA	12.5~18	20		450	101	600	135		
5GCH□KA	25~180			500	112	700	157		
	5~9			100	22	150	33		
GV2G	12.5~25	6.0	53	150	33	200	45	40	9
	30~360			200	45	300	67		
	5~9	10		150	33	200	45	80	18
GV3G	12.5~25		88	200	45	300	67		
	30~360			300	67	400	90		
	5~9	16		200	45	250	56	100	22
GV4G	12.5~25		141	300	67	350	78		
	30~360			450	101	550	123		
	5~9			400	90	500	112		
GVH5G	12.5~18	30	260	450	101	600	135	150	33
	25~300			500	112	700	157		
	5~9			400	90	500	112		
GVR5G	12.5~18	40	350	450	101	600	135	150	33
	25~180			500	112	700	157		
BH6G2-	3~36	40	350	550	123	800	180	200	45
	50~180	0	000	650	146	1000	220	200	טד
BH6G2-□RH	5~36	60	530	1200*	270	1100*	240	300	67
	50~180	00		2200*	490	2000*	450	000	01
BH6G2-□RA	5~36	60	530	900	200	1000	220	300	67
	50~180	00	00 530	1700	380	1850	410	300	01

Torque Motors

Installation

Constant Speed Motors

		Gear Ratio Max. Permissible Torque			Permissible 0	Permissible Thrust Load					
Model	Gear Ratio			10 mm (0.39 in.) from shaft end				20 mm (0.79 in.) from shaft end			
		N∙m	lb-in	N	lb.	N	lb.	N	lb.		
FPW425	3~18	8.0	70	100	22	150	33	50	11.2		
FFW423	25~180	0.0	70	200	45	300	67				
FPW540	3~18	- 10	88	250	56	350	78	100	22		
FPW340	25~180			300	67	450	101				
	3~9	. 18 15				400	90	500	112		
FPW560	60 12.5~18		132	450	101	600	135	150	33		
	25~180			500	112	700	157				
FPW690	3~9	30	260	550	123	800	180	200	45		
	12.5~180	30	200	650	146	1000	220		40		

• For permissible overhung load and permissible thrust load of right-angle gearheads, refer to the page where the products are listed. -> Page C-229

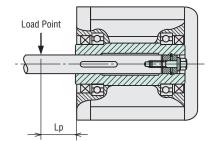
* For BH6G2- RH (Gearhead for BH Series and BHF Series right-angle, hollow shaft combination type), the permissible overhung load is the value at the distance from the flange mounting surface.

The permissible overhung load at each distance is calculated with the formula below.

♦ Calculating the Permissible Overhung Load for BH6G2-□RH

When the end of the shaft being driven is not supported by a bearing as shown in the figure below, calculate the permissible overhung load using the following formula. (This mechanism is the most demanding state in terms of overhung load.)

Gear ratio 5:1~36:1


Permissible overhung load $W[N (lb.)] = \frac{87.5 \text{ mm } (3.44 \text{ in.})}{87.5 \text{ mm } (3.44 \text{ in.}) + L_P} \times 1350 \text{ N} (300 \text{ lb.})$

1350 N (300 lb.) : Permissible overhung load at the flange mounting surface

Gear ratio 50:1~180:1

Permissible overhung load $W[N (lb.)] = \frac{87.5 \text{ mm } (3.44 \text{ in.})}{87.5 \text{ mm } (3.44 \text{ in.}) + L_P} \times 2450 \text{ N} (550 \text{ lb.})$

2450 N (550 lb.) : Permissible overhung load at the flange mounting surface

Permissible Load Inertia J of Gearhead

When a high load inertia (J) is connected to a gearhead, high torque is exerted instantaneously on the gearhead when starting in frequent, intermittent operations (or when stopped by an electromagnetic brake, or when stopped instantaneously by a brake pack). The table below gives values for permissible load inertia at the motor shaft. Use the motor and gearhead within these parameters. The

permissible load inertia for three-phase motors is the value when reversing after a stop.

The permissible load inertia (J) at the gearhead output shaft is calculated with the following formula.

The life of the gearhead when operating at the permissible load inertia with instantaneous stop of motors with electromagnetic brakes, brake pack or speed control motors is approximately two million cycles.

Permissible Load Inertia at the Gearhead Output Shaft

Gear ratio 3:1~50:1	$J_G = J_M \times i^2$	J_G	: Permissible load inertia at the gearhead output shaft J [$\times 10^{-4}$ kg·m ² (oz-in ²)]
Gear ratio 60:1 or higher	$J_G = J_M \times 2500$	J_M	: Permissible load inertia at the motor shaft J [×10 ⁻⁴ kg·m ² (oz-in ²)]
		i	: Gear ratio (Example: $i = 3$ means the gear ratio of 3:1)

Number of Phase	Frame Size	Output Power	Permissible Load Inertia at the Motor Shaft J [$\times 10^{-4}$ kg·m ² (oz-in ²)]		
	□42 mm (□1.65 in.)	1 W, 3 W (1/750 HP, 1/250 HP)	0.016 (0.088)		
	□60 mm (□2.36 in.)	6 W (1/125 HP)	0.062 (0.34)		
	□70 mm (□2.76 in.)	15 W (1/50 HP)	0.14 (0.77)		
Single-Phase	□80 mm (□3.15 in.)	25 W (1/30 HP)	0.31 (1.70)		
Sillyle-FildSe		40 W (1/19 HP)	0.75 (4.1) [1.1 (6.0)]*		
	□90 mm (□3.54 in.)	60 W (1/12 HP)	1.1 (6.0)		
		90 W (1/8 HP)	1.1 (6.0)		
	□104 mm (□4.09 in.)	200 W (1/4 HP)	2.0 (10.9)		
	□60 mm (□2.36 in.)	6 W (1/125 HP)	0.062 (0.34)		
	□70 mm (□2.76 in.)	15 W (1/50 HP)	0.14 (0.77)		
	□80 mm (□3.15 in.)	25 W (1/30 HP)	0.31 (1.70)		
Three-Phase		40 W (1/19 HP)	0.75 (4.1) [1.1 (6.0)]*		
	□90 mm (□3.54 in.)	60 W (1/12 HP)	1.1 (6.0)		
		90 W (1/8 HP)	1.1 (6.0)		
	□104 mm (□4.09 in.)	200 W (1/4 HP)	2.0 (10.9)		

Permissible Load Inertia at the Motor Shaft

*Values in the brackets are for the **V** Series.