Load ratings WIESEL[™]

Dynamic load ratings

With the help of dynamic load ratings, it is possible to calculate the approximate lifetime, dependent on load. The figures shown are for the KGT, according to DIN 69051, Part 4, Draft 1989, and for the guide, according to DIN 636.

Туре	Скам Р=4	Скам Р=5	Скам Р=10	Скам Р=20	Скам Р=40	Скам Р=50	CFS Y	CFS Z	Les X	LFS Y
	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[mm]	[mm]
WH40	_	_	-	-	_	-	(2x) 2786	(2x) 3397	72	_
WH50	-	-	-	-	-	-	-	(4x) 1270	198	39
WH80	_	-	-	-	-	-	-	(4x) 3670	220	65
WH120	-	-	-	-	-	-	-	(4x) 16200	180	97
WHZ50	_	_	-	-	_	-	-	(4x) 1270	198	39
WHZ80	-	-	-	-	-	-	-	(4x) 3670	220	65
WM40	_	2393	-	-	-	-	(2x) 2786	(2x) 3397	87	-
WM60-370 ZRT	-	-	-	-	-	-	(2x) 12964	(2x) 11934	-	35
WM60-370	-	7552	-	8312	-	4677	(2x) 12964	(2x) 11934	-	35
WM60	-	7552	-	8312	-	4677	(4x) 11495	(4x) 10581	141.7	35
WM60-500	_	7552	-	8312	-	4677	(4x) 11495	(4x) 10581	141.7	35
WM80-370 ZRT	-	-	-	-	-	-	(2x) 18723	(2x) 17919	-	49.75
WM80 ZRT	_	_	-	-	_	-	(4x) 14356	(4x) 13739	153	49.75
WM80-370	-	8804	9311	9365	-	8572	(2x) 18723	(2x) 17919	-	49.75
WM80	_	8804	9311	9365	-	8572	(4x) 14356	(4x) 13739	154	49.75
WM120	_	15429	24049	20667	8341	-	(4x) 18723	(4x) 17919	186	80.75
WV60	-	7552	-	8312	-	4677	-	-	-	-
WV80	-	8804	9311	9365	-	8572	-	-	-	-
WV120	_	15429	24049	20667	8341	_	_	_	_	_

Important note: The permissible force and moment threshold values for the respective linear unit must not be exceeded at any time.

Unit conversions

Length:	1 m=1000 mm=39.37 inches 1 inch=25.4 mm	Geometrical moment of inertia:	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
Force:	1 N=0.225 lbf 1 lbf=4.45 N	Mass moment of inertia:	$1 \text{ kg} \cdot \text{m}^2 = 10^4 \text{ kg} \cdot \text{cm}^2 = 0.738 \text{ lb} \cdot \text{ft} \cdot \text{s}^2$
Moment of Force:	1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1 36 Nm	Mass:	1 kg=2.2 lb

Precision Technology

Drive selection

for linear drive units with toothed belt drive

Feed force F_{*} [N]

Acceleration force

 $F_x = m \cdot q \cdot \mu$

$$\label{eq:Fa} \begin{split} F_a &= m \, \cdot \, a \\ & \text{In vertical applications, the mass} \\ & \text{acceleration } a \text{ must be added} \\ & \text{to the acceleration due to gravity} \\ & g \text{ [9.81 m/s^2].} \end{split}$$

Definitions

- M_A = Required drive moment [Nm]
- M_{load} = Moment resulting from the various loads [Nm]
- M_{idle} = Idle torque [Nm]
- M_{rot} = Rotational acceleration moment [Nm]
- M_{trans} = Translational acceleration moment [Nm]
- F_x = Feed force [N]
- F_a = Acceleration force [N]
- g = Acceleration due to gravity [m/s²]
- V_{max} = Maximum linear speed [m/s]

Power from torque and rotational speed [kW]

 $P = \frac{M_{A} \cdot n_{max} \cdot 2 \cdot \pi}{60 \cdot 1000}$

- m = Mass to be transported $[kg]^{1}$
- a = Acceleration [m/s²]
- d_{\circ} = Effective diam. of pulley [mm]²⁰
- P = Power [kW]
- $L = WIESEL^{TM} \text{ length [mm]}$
- J_{syn} = Idle torque of pulley [kgm²]
- n_{max} = Maximum rotational speed [rpm]
- μ = Friction factor

Calculating the drive moment $M_{\mathbb{A}}$ [Nm]

The required drive moment is composed of the "load moment", the "acceleration moment" and the "idle torque".

MA Total =

Туре	μ	J _{syn} [kgm²]	Spec. weight tooth belt [kg/m]	Туре	μ	J _{syn} [kgm²]	Spec. weight tooth belt [kg/r
WH40	0.05	8.800 E-06	0.032	WHZ50	0.1	6.906 E-05	0.055
WH50	0.1	1.928 E-05	0.055	WHZ80	0.1	5.026 E-04	0.114
WH80	0.1	2.473 E-04	0.210				
WH120	0.1	1.004 E-03	0.340				

¹⁾ Total weight m = weight to be moved + weight of power bridge ³⁰ + weight of toothed belt Weight of toothed belt = spec. weight of tooth belt [kg/m] · 2 ⁴⁰ · <u>WIESEL™</u>. length [mm]

²⁾ Values for the respective effective diameters, see at corresponding mechanical linear units.

 $^{3)}\,\text{For Z-axis}$ moved dead weight to be taken into account.

⁴⁾ To replace by 1 at Z-Axis

Precision Technology

Drive selections

for linear drive units with ball screw drive

Feed force Acceleration force F_{*} [N] F_a [N] [kW] $\mathbf{F}_a = \mathbf{m} \cdot \mathbf{a}$ $M_{\text{A}} \cdot n_{\text{max}} \cdot 2 \cdot \pi$ In vertical applications, the mass acceleration **a** must be added to the acceleration due to gravity P = _ $F_{x}=m\cdot g\cdot \mu$ 60 · 1000 g [9.81 m/s²]. Definitions M_A = Required drive moment [Nm] = Mass to be transported [kg] m M_{load} = Moment resulting from the various loads [Nm] = Acceleration [m/s²] а M_{idle} = Idle torque [Nm] = Screw pitch [mm] р M_{rot} = Rotational acceleration moment [Nm] Ρ = Power [kW] M_{trans} = Translational acceleration moment [Nm] L = WIESEL[™] length [mm] = Feed force [N] = Maximum rotational speed [rpm] F× n_{max} = Acceleration force [N] Fa μ = Friction factor = Acceleration due to gravity [m/s²] = Mass moment of inertia of the screw per meter [kgm²/m] g sp

V_{max} = Maximum linear speed [m/s]

Power from torque and rotational speed

Calculating the drive moment M_A [Nm]

The required drive moment is composed of the "load moment", the "acceleration moment" and the "idle torque".

MA Total =

Friction	factor	μ
----------	--------	---

Values for µ	lubricated
WIESEL [™] <i>POWERLine</i> ®WM40	0.05
WIESEL [™] POWERLine [®] WM60/80/120	0.1
WIESEL [™] <i>DYNALine</i> ®	Friction value of the external guide

Mass moment of inertia jsp

Туре	P [mm]	j₅p[kgm²/m]
WIESEL [™] WM/WV 60	5	8.46 x 10 ⁻⁵
	20	8.83 x 10⁻⁵
	50	8.45 x 10⁵
WIESEL ™ <i>POWERLine®/DYNALine</i> ®80	5, 10, 20, 50	2.25 x 10 ⁻⁴
WIESEL ™ <i>POWERLine®/ DYNALine</i> ®120	5	6.41 x 10 ⁻⁴
	10, 20, 40	6.28 x 10 ⁻⁴
WIESEL [™] WM40	4,5	1.13 x 10⁵

Precision Technology